Skip Nav Destination
Close Modal
Search Results for
UNS K03504
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Book Series
Date
Availability
1-2 of 2
Search Results for UNS K03504
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001332
EISBN: 978-1-62708-215-0
... fracturing Pipe flanges Welded joints ASTM A105 UNS K03504 (Other, general, or unspecified) fracture Background A 356 mm (14 in.) diam slip-on flange cracked. Pertinent Specifications The specification called for an integral forging or a casting. Instead, the slip-on flange had been...
Abstract
A cracked 356 mm (14 in.) diam slip-on flange (Ni-Cr-Mo-V steel) was submitted for failure analysis. Reported results and observations indicated that the flange was not an integral forging or a casting, as specified. It had been fabricated by welding and machining a ring insert within a flange with a larger internal diameter. The flange cracked because the welds between the flange and the insert were inadequate to withstand the bolting pressures. A warning was issued to end users of the flanges, which are being inspected nondestructively for conformance to specifications.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001325
EISBN: 978-1-62708-215-0
... quality. Hydrogen sulfide Weld metal Welded joints UNS K03005 UNS K03504 UNS K03006 ASTM A53 grade B ASTM A105 ASTM A234 grade WPB Uniform corrosion High-temperature corrosion and oxidation Background Application This cross-tee was located in piping which conveyed concentrated H...
Abstract
A carbon steel piping cross-tee assembly which conveyed hydrogen sulfide (H7S) process gas at 150 to 275 deg C (300 to 585 deg F) with a maximum allowable operating pressure of 3 MPa (450 psig) ruptured at the toe of one of the welds at the cross after several years of service. The failure was initially thought to be the result of thermal fatigue, and the internal surfaces exhibited the “elephant hide” pattern characteristic of thermal fatigue. However metallographic failure analysis found that this pattern was the result of corrosion rather than thermal fatigue. Corrosion caused failure at this location because the weld was abnormally thin as fabricated. Thus, failure resulted from inadequate deposition of weld metal and subsequent wall thinning from internal corrosion. It was recommended that the cross-tee be replaced with a like component, with more careful attention to weld quality.