Skip Nav Destination
Close Modal
Search Results for
UNS K02700
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2 Search Results for
UNS K02700
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0048819
EISBN: 978-1-62708-233-4
... with the nozzle weld. Caustic embrittlement Potassium hydroxide Pressure vessels ASTM A516 Grade 70 UNS K02700 Stress-corrosion cracking A large pressure vessel ( Fig. 1a ) that had been in service for about 10 years as a hydrogen sulfide (H2S) absorber developed cracks and began leaking...
Abstract
A large pressure vessel that had been in service as a hydrogen sulfide (H2S) absorber developed cracks and began leaking at a nozzle. The vessel contained a 20% aqueous solution of potassium hydroxide (KOH), potassium carbonate (K2CO3), and arsenic. The vessel wall was manufactured of ASTM A516, grade 70, low-carbon steel plate. A steel angle had been formed into a ring was continuously welded to the inside wall of the vessel. The groove formed by the junction of the lower tray-support weld and the top part of the weld around the nozzle was found to have a crack. Pits and scale near the crack origin were revealed by microscopic examination and cracking was found to be transgranular. Periods of corrosion alternated with sudden instances of cleavage, under a tensile load, along preferred slip planes were interpreted during examination with a microscope. It was concluded that the combination of the residual plus operating stresses and the amount of KOH present would have caused stress corrosion as a result of caustic embrittlement. It was recommended that the tray support should be installed higher on the vessel wall to prevent coincidence of the lower tray-support weld with the nozzle weld.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001146
EISBN: 978-1-62708-229-7
... a thermal shock in the pipe which, when cooled below its NDTT, cracked in a brittle manner. Low temperature Nil ductility transition temperature Nuclear power generation Piping Thermal shock ASTM A516 grade 70 UNS K02700 Brittle fracture Introduction On February 3, 1984, Georgia Power...
Abstract
A metallurgical failure analysis was performed on pieces of the cracked vent header pipe from the Edwin I. Hatch Unit 2 Nuclear power plant. The analysis consisted of optical microscopy, chemical analysis, mechanical Charpy impact testing, and fractography. It was found that the material of the vent header met the mechanical and chemical properties of ASTM A516 Grade 70 carbon-manganese steel material and microstructures were consistent with this material. Fracture faces of the cracked pipe were predominantly brittle in appearance with no evidence of fatigue contribution. The NDTT (Nil ductility Transition Temperature) for this material was approximately -51 deg C (-60 deg F). The fact that the material's NDTT was significantly out of the normal operating range of the pipe suggested an impingement of low temperature nitrogen (caused by a faulty torus inerting system) induced a thermal shock in the pipe which, when cooled below its NDTT, cracked in a brittle manner.