Skip Nav Destination
Close Modal
Search Results for
UNS J91150
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3 Search Results for
UNS J91150
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0089563
EISBN: 978-1-62708-217-4
... lever. Aircraft components Casting defects Castings Cold shuts Fuel control lever Nondestructive testing 410 UNS J91150 Casting-related failures The lever shown in Fig. 1 was a component of the main fuel-control linkage of an aircraft engine. After a service life of less than 50 h...
Abstract
A lever (machined from a casting made of AISI type 410 stainless steel, then surface hardened by nitriding) that was a component of the main fuel-control linkage of an aircraft engine fractured in flight after a service life of less than 50 h. Investigation (radiographic inspection) supported the conclusions that the lever broke at a cold shut extending through approximately 95% of the cross section. The normally applied load constituted an overload of the remainder of the lever. Recommendations included adding magnetic-particle inspection to the inspection procedures for this cast lever.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001085
EISBN: 978-1-62708-214-3
... crack indication revealed that the failure was caused by hot cracking related to original weld repairs performed on the impeller casting. Castings Nuclear reactor components Repair welding Rotary pumps Weld defects Welded joints CA-15 UNS J91150 Joining-related failures Background...
Abstract
Liquid penetrant inspection of an ASTM A296 grade CA-15 residual heat removal pump impeller from a nuclear plant revealed a crack like indication that approximated the outer contour of the wear ring. Examination of a section containing the crack and three sections from near the main crack indication revealed that the failure was caused by hot cracking related to original weld repairs performed on the impeller casting.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001365
EISBN: 978-1-62708-215-0
... pumps Shrinkage CA-15 UNS J91150 Casting-related failures Background Numerous cracks and other defects were apparent on the surface of a main boiler feed pump impeller at an electric utility. Circumstances Leading to Failure The impeller had been in operation for about 3 years when...
Abstract
An investigation was conducted to determine the cause of numerous cracks and other defects on the surface of a cast ASTM A743 grade CA-15 stainless steel main boiler feed pump impeller. The surface was examined using a stereomicroscope, and macrofractography was conducted on several cross sections removed from the impeller body. Areas that appeared to have the most severe surface damage were sectioned, fractured open, and examined using SEM. The chemistry of the impeller and an apparent repair weld were also analyzed. The examination indicated that the cracks were shrinkage voids from the original casting process. Surface repair welds had been used to fill in or cover over larger shrinkage cavities. It was recommended that more stringent visual and nondestructive examination criteria be established for the castings.