Skip Nav Destination
Close Modal
Search Results for
UNS H43200
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Search Results for UNS H43200
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001092
EISBN: 978-1-62708-214-3
... stresses Transmissions (automotive) 4320H UNS H43200 Rolling-contact wear Fatigue fracture Background A transfer gear shaft that was part of a transmission sustained severe surface damage after 12 h of dynamometer testing at various gearing and torque loads. Applications The gear shaft...
Abstract
An AISI 4320 H transfer gear shaft that was part of a transmission sustained severe surface damage after 12 h of dynamometer testing at various gearing and torque loads. The damage was characterized by generalized wear and spalling. Examination of a cross section of the shaft that intersected undamaged, burnished, and surface-spalled zones revealed no anomalies in the chemistry, microstructure, or hardness that could have caused the damage. The physical evidence suggested that the operable mechanism was contact fatigue caused by misalignment of the shaft in the assembly.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001496
EISBN: 978-1-62708-231-0
..., it most likely was permanent misalignment within the assembly. Alignment Gears Trains 4320H UNS H43200 Fatigue fracture A spiral gear and pinion set were submitted for analysis. The pinion was intact, but the gear had broken into two sections that resulted when two fractured areas went...
Abstract
A failed spiral gear and pinion set made from 4320H Ni-Cr-Mo alloy steel operating in a high-speed electric traction motor gear unit driving a rapid transit train were submitted for analysis. The pinion was intact, but the gear had broken into two sections that resulted when two fractured areas went through the body of the gear. Wheel mileage of the assembly was 34,000 miles at the time of failure. All physical and metallurgical characteristics were well within specified standards, and both parts should have withstood normal loading conditions. The primary mode of failure was tooth bending fatigue of the gear from the reverse direction near the toe end. The cause of failure was a crossed-over tooth bearing condition that placed loads at the heel end when going forward and at the toe end when going in reverse. The condition was too consistent to be a deflection under load; therefore, it most likely was permanent misalignment within the assembly.