Skip Nav Destination
Close Modal
Search Results for
UNS H15411
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2 Search Results for
UNS H15411
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0046182
EISBN: 978-1-62708-218-1
... surfaces before machining and before putting the part into service. Connecting rods Forgings Nonmetallic inclusions 15B41 UNS H15411 Fatigue fracture Metalworking-related failures A connecting cap ( Fig. 1a ) from a truck engine fractured after 65,200 km (40,500 miles) of service. The cap...
Abstract
A connecting cap from a truck engine fractured after 65,200 km (40,500 mi) of normal service. The cap was made from a 15B41 steel forging and was hardened to 29 to 35 HRC. Visual examination of the fracture surface disclosed an open forging defect across one of the outer corners of the cap. The defect extended approximately 9.5 mm (3/8 in.) along the side of the cap. The fracture surface exhibited beach marks typical of fatigue. The surface of the defect was stained, indicating that oxidation occurred either in heat treatment or in heating during forging. Deep etching of the fracture surface revealed grain flow normal for this type of forging, but no visible defects. 400x metallographic examination of a section through the fracture surface showed that the microstructure was an acceptable tempered martensite. However, oxide inclusions were present at the fracture surface. This evidence supported the conclusion that fatigue fracture initiated at a corner of the cap from a forging defect that extended to the surface. Fatigue cracking was propagated by cyclic loading inherent in the part. Recommendations included more careful fluorescent magnetic-particle inspection of the forged surfaces before machining and before putting the part into service.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047148
EISBN: 978-1-62708-235-8
... may have been a partial cause for the defect. Recommendations included better inspection of the forgings by fluorescent magnetic-particle testing before machining. Connecting rods Forgings Laps Truck engines 15B41 UNS H15411 Fatigue fracture Metalworking-related failures A connecting...
Abstract
A connecting rod (forged from 15B41 steel and heat treated to a hardness of 29 to 35 HRC) from a truck engine failed after 73,000 Km (45,300 mi) of service. A piece of the I-beam sidewall of the rod, about 6.4 cm (2 in.) long, was missing when the connecting rod arrived at a laboratory for testing. Analysis (visual inspection, 100x nital-etched micrograph, fluorescent magnetic-particle testing, and metallographic examination) supported the conclusion that the rod failed in fatigue with the origin along the lap and located approximately 4.7 mm below the forged surface. The presence of oxides may have been a partial cause for the defect. Recommendations included better inspection of the forgings by fluorescent magnetic-particle testing before machining.