Skip Nav Destination
Close Modal
Search Results for
UNS G10950
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-1 of 1
Search Results for UNS G10950
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048120
EISBN: 978-1-62708-225-9
.... Blanking Switchgear Telephone equipment 1095 UNS G10950 Fatigue fracture The pawl spring shown in Fig. 1(a) was part of a selector switch used in telephone equipment. Three of these springs that broke and strip specimens of the raw material used to fabricate similar springs were examined...
Abstract
The pawl spring which was part of a selector switch used in telephone equipment failed. The springs were blanked from 0.4 mm (0.014 in.) thick tempered 1095 steel and then nickel plated. Numerous pits around the rivet holes were revealed by microscopic examination of longitudinal specimens. Delaminations that were formed at inclusion sites during punching of the rivet holes and that were filled with nickel during the plating operation were revealed by microscopic examination of the rivet hole. These delaminations were interpreted to have acted as stress raisers and initiated the fracture. Long, narrow sulfide stringers which were the probably the cause of delamination in this spring material were revealed in the raw material used to make the springs. It was concluded that fracture of the springs was caused by fatigue that had originated at delaminations around the rivet holes.