Skip Nav Destination
Close Modal
Search Results for
UNS C22000
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Book Series
Date
Availability
1-1 of 1
Search Results for UNS C22000
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001318
EISBN: 978-1-62708-215-0
... Intergranular fracture Mercury Rupturing Safety equipment C22000 UNS C22000 Liquid metal induced embrittlement Background Applications Commercial bronze rupture discs (C22000) are used in a safety device integral with valves used on flammable gas containing cylinders. C22000 composition limits...
Abstract
Failure of three C22000 commercial bronze rupture discs was caused by mercury embrittlement. The discs were part of flammable gas cylinder safety devices designed to fail in a ductile mode when cylinders experience higher than design pressures. The subject discs failed prematurely below design pressure in a brittle manner. Fractographic examination using SEM indicated that failure occurred intergranularly from the cylinder side. EDS analysis indicated the presence of mercury on the fracture surface and mercury was also detected using scanning auger microprobe (SAM) analysis. The mercury was accidentally introduced into the cylinders during a gas-blending operation through a contaminated blending manifold. Replacement of the contaminated manifold was recommended along with discontinued use of mercury manometers, the original source of mercury contamination.