Skip Nav Destination
Close Modal
Search Results for
Turbine disks
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 59 Search Results for
Turbine disks
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001354
EISBN: 978-1-62708-215-0
... Abstract An A-470 steel rotor disk was removed from the high-pressure portion of a steam turbine-powered compressor after nondestructive testing revealed cracks in the shoulder of the disk during a scheduled outage. Samples containing cracks were examined using various methods. Multiple cracks...
Abstract
An A-470 steel rotor disk was removed from the high-pressure portion of a steam turbine-powered compressor after nondestructive testing revealed cracks in the shoulder of the disk during a scheduled outage. Samples containing cracks were examined using various methods. Multiple cracks, primarily intergranular were found on the inlet and outlet faces along prior-austenite grain boundaries. The cracks initiated at the surface and propagated inward. Multiple crack branching was observed. Many of the cracks were filled with iron oxide. X-ray photoelectron spectroscopy indicated the presence of sodium on crack surfaces, which is indicative of NaOH-induced stress-corrosion cracking. Failure was attributed to superheater problems that resulted in caustic carryover from the boiler. Two options for disk repair, installing a shrink-fit disk or applying weld buildup, were recommended. Weld repair was chosen, and the rotor was returned to service; it has performed for more than 1 year without further incident.
Image
Published: 01 December 1992
Fig. 1 Two views of the main shaft with the turbine disk. (a) Overall view. (b) Closeup view showing the lateral shift of the disk from its original position.
More
Image
Published: 01 December 1993
Image
Published: 01 December 1993
Image
Published: 15 January 2021
Fig. 13 Photograph of an opened stress-corrosion crack in a steam turbine disk. Dashed line highlights the crack-arrest mark observed on the fracture surface.
More
Image
Published: 15 January 2021
Fig. 25 Photograph of a cross section removed from the steam turbine disk. Stress-corrosion cracking (arrows) initiated at the blade root lands of the blade attachment.
More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001080
EISBN: 978-1-62708-214-3
... Abstract A steam turbine developed excessive noise and vibration during routine operation. It was found that the nut that locked the turbine disk In place had worked its way out from the threads and the disk had come of the shaft. Examination of the locking mechanism indicated that its design...
Abstract
A steam turbine developed excessive noise and vibration during routine operation. It was found that the nut that locked the turbine disk In place had worked its way out from the threads and the disk had come of the shaft. Examination of the locking mechanism indicated that its design was responsible for the loosening of the nut. It was recommended that the locking mechanism be redesigned and changed in all existing turbines.
Image
Published: 01 December 1992
Image
Published: 15 January 2021
Fig. 11 View of stress-corrosion cracks (arrows) on the upstream side of a steam turbine disk. Plastic deformation or thinning was not observed adjacent to the stress-corrosion cracks.
More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001081
EISBN: 978-1-62708-214-3
... Abstract Several compressor disks in military fighter and trainer aircraft gas turbine engines cracked prematurely in the bolt hole regions. The disks were made of precipitation-hardened AM355 martensitic stainless steel. Experimental and analytical work was performed on specimens from...
Abstract
Several compressor disks in military fighter and trainer aircraft gas turbine engines cracked prematurely in the bolt hole regions. The disks were made of precipitation-hardened AM355 martensitic stainless steel. Experimental and analytical work was performed on specimens from the fifth-stage compressor disk (judged to be the most crack-prone disk in the compressor) to determine the cause of the failures. Failure was attributed to high-strain low-cycle fatigue during service. It was also determined that the cyclic engine usage assumed in the original life calculations had been under estimated, which led to low-cycle fatigue cracking earlier than expected. Fracture mechanics analysis of the disks was carried out to assess their damage tolerance and to predict safe inspection intervals.
Image
Published: 15 January 2021
Fig. 27 Micrographs of stress-corrosion cracking in a steam turbine rotor disk. Original magnification: (a) 100× and (b) 500×. Micrograph in (b) is a magnified view of the area within the box in (a).
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001756
EISBN: 978-1-62708-241-9
... assembly comprises of a disk, blades, rotor shaft, and stub shaft. The blades are directionally solidified, air-cooled, and are keyed to the disk by fir-tree roots. They are retained in position by locking plates which fit in circumferential grooves in the rear face of the turbine disk. The other modules...
Abstract
The failure of HP turbine blades in a low bypass turbofan engine was analyzed to determine the root cause. Forensic and metallurgical investigations were conducted on all failed blades as well as failed downstream components. It was found that one of the blades fractured in the dovetail region, causing extensive damage throughout the turbine. Remedial measures were suggested to prevent such failures in the future.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0090030
EISBN: 978-1-62708-217-4
... Gas turbine engines Microcracking Phase transformations Rotors Titanium Fatigue fracture Brittle fracture In 1989, a United Airlines DC-10 in transit from Denver to Chicago experienced failure of the center engine. The titanium compressor disk burst and severed the hydraulics of the plane...
Abstract
A DC-10 in transit from Denver to Chicago experienced failure of the center engine. The titanium compressor disk burst and severed the hydraulics of the plane. Investigation supports the conclusion that the cause of the disk rupture was the presence of a large fatigue crack near the bore emanating from a hard alpha (HA) defect. Such defects can result from occasional upsets during the vacuum melting of titanium. These nitrogen-rich alpha titanium anomalies are brittle and often have associated microcracks and microvoids. A probabilistic damage tolerance approach was recommended to address the anomalies, with the objective of enhancing rotor life management practices. The ongoing work involves the use of fracture mechanics and software (called DARWIN.) optimized for damage tolerant design and analysis of metallic structural components.
Image
Published: 15 January 2021
Fig. 14 Photograph of stress-corrosion cracking (arrows) observed on the outside surface of a steam turbine rotor disk
More
Image
Published: 15 January 2021
Fig. 10 Photograph of an opened stress-corrosion crack in a steam turbine rotor disk. SCC, stress-corrosion cracking
More
Image
Published: 15 January 2021
Fig. 24 Photograph of magnetic-particle inspection indications of stress-corrosion cracking (arrows) in a steam turbine rotor disk
More
Image
Published: 15 January 2021
Fig. 16 Scanning electron microscopy image of an opened stress-corrosion crack in a steam turbine rotor disk. Arrows identify crack branches.
More
Image
Published: 15 January 2021
Fig. 26 Scanning electron microscope images of an opened stress-corrosion crack in a steam turbine rotor disk that exhibits brittle, intergranular fracture
More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006796
EISBN: 978-1-62708-295-2
... such as rain erosion of solid materials, gas turbine blades, wind turbine blades, airplane components, and pipe-wall thinning in nuclear/fossil power plants. Because of the fundamental interest in the mechanics of fluids and solids, this topic has been reviewed by Heymann ( Ref 1 ) and Richman ( Ref 2...
Abstract
Erosion of a solid surface can be brought about by liquid droplet impingement (LDI), which is defined as "progressive loss of original material from a solid surface due to continued exposure to erosion by liquid droplets." In this article, the emphasis is placed on the damage mechanism of LDI erosion under the influence of a liquid film and surface roughness and on the prediction of LDI erosion. The fundamentals of LDI and processes involved in initiation of erosion are also discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
...-corrosion crack in a steam turbine rotor disk. SCC, stress-corrosion cracking Macroscopic Characteristics of Stress-Corrosion Cracking As discussed previously, one of the characteristics of SCC is the development of brittle cracks in a normally ductile material. Given the brittle nature of SCC...
Abstract
Stress-corrosion cracking (SCC) is a form of corrosion and produces wastage in that the stress-corrosion cracks penetrate the cross-sectional thickness of a component over time and deteriorate its mechanical strength. Although there are factors common among the different forms of environmentally induced cracking, this article deals only with SCC of metallic components. It begins by presenting terminology and background of SCC. Then, the general characteristics of SCC and the development of conditions for SCC as well as the stages of SCC are covered. The article provides a brief overview of proposed SCC propagation mechanisms. It discusses the processes involved in diagnosing SCC and the prevention and mitigation of SCC. Several engineering alloys are discussed with respect to their susceptibility to SCC. This includes a description of some of the environmental and metallurgical conditions commonly associated with the development of SCC, although not all, and numerous case studies.
1