1-20 of 86 Search Results for

Turbine blade steel

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001143
EISBN: 978-1-62708-229-7
... investigation. The discussion centers around the question of how to determine whether the failure was a fatigue induced failure, occurring in accordance with normal life cycle estimates, or whether outside influences could have initiated or hastened the failure. Turbine blades Turbine blade steel...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001193
EISBN: 978-1-62708-229-7
... Abstract When a steam turbine was put out of service, cracks were noticed on many of the blades in the low pressure section round the stabilization bolts and perpendicular to the blade axis. The blades were made from chrome alloy steel X20-Cr13 (Material No. 1.402). When the bolts were brazed...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001658
EISBN: 978-1-62708-229-7
... Abstract The intermediate pressure (IP) turbine of a thermal generating station is driven by steam from the boiler's reheater. On one particular IP turbine, a thick deposit was found on the insides of the rotor blade shrouds in two instances two years apart. The source of the deposits...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001228
EISBN: 978-1-62708-229-7
... Abstract In an electric power station, seven turbine blades out of 112 broke or cracked within 8 to 14 months after commencement of operation. The blades in question were all located on the last running wheel in the low pressure section of a 35,000 kW high pressure condensing turbine. They were...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... versus the time. More information is presented later in this article. Fig. 4 Examples of thermal-mechanical fatigue cracking and oxidation in a first-stage turbine blade Metallurgical Instabilities Metallurgical instabilities form when superalloy turbine blades and steel tubes or piping...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001355
EISBN: 978-1-62708-215-0
... Abstract A cracked, martensitic stainless steel, low-pressure turbine blade from a 623 MW turbine generator was found to exhibit fatigue cracks during a routine turbine inspection. The blade was cracked at the first notch of the fir tree and the cracks initiated at pits induced by chloride...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001692
EISBN: 978-1-62708-229-7
... by a wedging action as the blade pitch adjusted during a revolution. Fatigue of the rim occurred as a result of inadequate lubrication in the bearing, which led to load transfer across the rollers, onto the rim. Bearings Bolts Lubrication Pretensioning Turbine blades Wind turbines Ferritic steel...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
... these features. The majority of HCF cracking in turbomachinery failures is transgranular, although intergranular propagation has been observed where corrosion is active. Intergranular HCF cracking has been observed in steam turbine blades manufactured from 400-series stainless steel forgings, which may have...
Book Chapter

Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001412
EISBN: 978-1-62708-229-7
... stainless steel of the type commonly used for turbine blades. A number of non-metallic inclusions were present which had been drawn into threads in rolling; these appeared to consist largely of duplex silicates. The failure of blade 28 was the result of the development of a creeping crack. Magnetic crack...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... accumulate in a relatively short time, as illustrated by deep erosion in a stainless steel overlay on a carbon steel blade in a Francis turbine after about 7000 h ( Fig. 6 ), and erosion completely through a carbon steel impeller in a 5000 hp pump after about 20,000 h ( Fig. 7 ). A previous repair...
Image
Published: 01 January 2002
Fig. 10 Surface appearance at low magnification of a steam turbine blade eroded by water droplets. (a) 12% Cr steel blade material. (b) Stellite 6B shield More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001362
EISBN: 978-1-62708-215-0
... Abstract Numerous cracks observed on the surface of a forged A470 Class 4 alloy steel steam turbine rotor disc from an air compressor in a nitric acid plant were found to be the result of caustic induced stress-corrosion cracking (SCC). No material defects or anomalies were observed in the disc...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001758
EISBN: 978-1-62708-241-9
... Fig. 1 Data showing improvements in stress-rupture life for the equiaxed (EQ), directionally solidified (DS), and single crystal (SX) type castings Fig. 2 Macroetched turbine blades showing characteristic grain structure for equiaxed (EQ), directionally solidified (DS), and single...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001757
EISBN: 978-1-62708-241-9
... of the microstructure suggested work hardening. Based on the results, the cause of the fractured blade was high-amplitude fatigue due to severe stall. After normal engine usage of five months, the blade fractured sending fragments throughout the combustion and turbine sections. References References 1...
Image
Published: 01 January 2002
Fig. 6 Deep cavitation erosion of austenitic stainless steel weld overlay on a carbon steel turbine blade. Courtesy of T.J. Spicher More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001835
EISBN: 978-1-62708-241-9
... Abstract Wind turbine blades are secured by a number of high-strength bolts. The failure of one such bolt, which caused a turbine blade to detach, was investigated to determine why it fractured. Based on the results of a detailed analysis, consisting of stress calculations, chemical composition testing...
Image
Published: 01 January 2002
Fig. 9 Joint area between Stellite 6B (top) and 12% Cr steel (bottom) of a steam turbine blade eroded by water droplets More
Image
Published: 30 August 2021
Fig. 16 Liquid droplet erosion from a low-pressure steam turbine blade that failed under fatigue loading. (a) Photograph of leading-edge airfoil, suction side. The lower portion of the airfoil (left) was 400-series stainless steel alloy; the upper portion of the airfoil (right) was clad More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001150
EISBN: 978-1-62708-235-8
... to turbine blades, but are not solid, consisting rather of a number of components. Two 4- 1 2 in. width × 2- 5 8 in. thickness carbon steel bars cut from rolled plate are welded to the scroll shaft approximately 70° from each other and at slightly different elevations. Three curved...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001358
EISBN: 978-1-62708-215-0
... Abstract Several compressor diaphragms from five gas turbines cracked after a short time in service. The vanes were constructed of type 403 stainless steel, and welding was performed using type 309L austenitic stainless steel filler metal. The fractures originated in the weld heat-affected...