Skip Nav Destination
Close Modal
Search Results for
Tube components
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 235
Search Results for Tube components
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Failure Analysis of a Large Blender in a Chemical Plant
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 8 Components of the water seal on the vacuum tube assembly. The graphite seals are indicated by arrows. The spring collar holds the seals against the two metal rings.
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing...
Abstract
This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing. The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001534
EISBN: 978-1-62708-220-4
... Abstract A detailed failure analysis was conducted on an ammonia refrigerant condenser tube component that failed catastrophically during its initial hours of operation. Evidence collected clearly demonstrated that the weld between a pipe and a dished end contained a sharp unfused region at its...
Abstract
A detailed failure analysis was conducted on an ammonia refrigerant condenser tube component that failed catastrophically during its initial hours of operation. Evidence collected clearly demonstrated that the weld between a pipe and a dished end contained a sharp unfused region at its root (lack of penetration). Component failure had started from this weld defect. The hydrogen absorbed during welding facilitated crack initiation from this weld defect during storage of the component after welding. Poor weld toughness at the low operating temperature facilitated crack growth during startup, culminating in catastrophic failure as soon as the crack exceeded critical length.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001312
EISBN: 978-1-62708-215-0
.... Hydrostatic testing at a pressure times greater than the maximum operating pressure prior to placing the component in service was also suggested. Condenser tubes Condensers (liquefiers) Refrigerating machinery Cu-0.04Sn-0.02Al Ductile fracture Background A copper condenser dashpot...
Abstract
A copper condenser dashpot in a refrigeration plant failed prematurely. The dashpot was a long tubular component with a cup brazed at each end. Stereomicroscopic examination of the fracture surface at low magnification revealed a typical ductile mode of failure. The failure was attributed to insufficient component thickness, which made the dashpot unable to withstand internal operating pressure, and to extensive annealing in the heat-affected zones of the brazed joints. It was recommended that the condenser dashpot design take into account the annealing effects of brazing. Hydrostatic testing at a pressure times greater than the maximum operating pressure prior to placing the component in service was also suggested.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001688
EISBN: 978-1-62708-234-1
... case. Decarburization Superheaters Tube components ASTM A209 Creep fracture/stress rupture Intergranular corrosion High-temperature corrosion and oxidation The authors have been involved in the examination of many failed superheater components and the two examples given here...
Abstract
Some examples of equipment failures involving high temperature operation are presented. They include some steam generator superheater components and a pump shaft that should not have been at high temperature. Metallographic analysis is used to determine the causes of failure in each case.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090277
EISBN: 978-1-62708-229-7
... Residual stresses Steam generators Tube components Tubes Inconel 600 UNS N06600 Intergranular fracture Stress-corrosion cracking A steam generator is a key component used in the generation of steam in a closed-cycle pressurized-water nuclear power plant. It is essentially a large heat exchanger...
Abstract
A rupture of a thirty-year-old U-tube on a steam generator for a closed-cycle pressurized-water nuclear power plant occurred, resulting in limited release of reactor water. A typical tube bundle can be over 9 m (30 ft) tall and 3 m (10 ft) in diam with over 3,000 22-mm (7/8-in.) diam Inconel Alloy 600 tubes. Tube support plates (TSP) separate the tubes and allow flow of the heating water/steam. Inconel Alloy 600 is susceptible to intergranular stress-corrosion cracking over time, so investigation included review of operational records, maintenance history, and procedures. It also included FEA (thermal gradients, nonlinear material behavior, residual stress, changes in wall thickness during the formation of U-bends, and TSP distortions near the ruptured tube) of three-dimensional solid models of the U-tubes. The conclusion was that distortion of the TSPs and resulting “pinching” of the U-tubes, combined with the operational stresses, caused high stresses at the location where the tube cracked. The stresses were consistent with those required to initiate and propagate a longitudinal crack.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048772
EISBN: 978-1-62708-220-4
.... It was recommended that material that is intended for critical applications where failure cannot be tolerated should be non-destructively examined. Inclusions Pressure vessels Trialefin Tube components ASTM A213 grade T11 UNS K11597 Stress-corrosion cracking After 2 years of service, a return bend...
Abstract
A return bend (made from ASTM A213, grade T11, ferritic steel) from a triolefin-unit heater ruptured after two years in service. The unit operated at 2410 kPa, with a hydrocarbon feed stream (85% propylene) entering at 260 to 290 deg C and leaving at 425 to 480 deg C. The fracture was found to terminate at the welds that joined the bend to the pipeline. A high concentration of both small and large inclusions was exhibited by the metallographic examination of the steel near the fracture. Branched cracks similar to those produced by stress corrosion of steel were observed in a section through the fireside edge of the fracture surface. Scale was observed over most of the crack path which acted as a stress raiser. The effect of the oxide was magnified during thermal cycles because of differential thermal expansion, with the steel having a greater expansion coefficient than the scale. It was recommended that material that is intended for critical applications where failure cannot be tolerated should be non-destructively examined.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001406
EISBN: 978-1-62708-229-7
... found its way past the tube expansions. This indicated that this operation had not resulted in a satisfactorily tight joint. Boiler tubes Caustic cracking Leakage Sodium hydroxide Tube components Fe-0.11C-0.46Mn Intergranular fracture Stress-corrosion cracking Caustic cracking...
Abstract
Caustic cracking is the term used to describe one of the forms in which stress-corrosion cracking manifests itself in carbon steels. In the present study, persistent leakage occurred after ten weeks of service from tube expansions in the steam and mud drum of a two-drum D type boiler, which failed to respond to repeated expansion. The leakage was traced to circumferential cracking in the portion of Fe-0.11C-0.46Mn-0.018S-0.011P tubes within the expanded region. Microscopic examination indicated that all cracks started from the outer surface of the tubes in the expanded portion. The form of cracking which was mostly intergranular. Examination at higher magnification disclosed that a selective attack had taken place on the carbide constituents of the pearlite grains. An alkaline deposit on the fireside surface of the tube resulted from the evaporation of boiler water which had found its way past the tube expansions. This indicated that this operation had not resulted in a satisfactorily tight joint.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001696
EISBN: 978-1-62708-234-1
... from superficial to severe, with some pits extending through 75% of the tube's wall thickness. The SCC emanated from the pits and further reduced the service strength of the component until it could no longer sustain the operating pressure and final catastrophic fracture occurred. Corrosion-resistant...
Abstract
Piping and structural components used in space launch facilities such as NASA's Kennedy Space Center and the Air Force's Cape Canaveral Air Station face extreme operating conditions. Launch effluent and residue from solid rocket boosters react with moisture to form hydrochloric acid that settles on exposed surfaces as they are being subjected to severe mechanical loads imparted during lift-off. Failure analyses were performed on 304 stainless steel tubing that ruptured under such conditions, while carrying various gases, including nitrogen, oxygen, and breathing air. Hydrostatic testing indicated a burst strength of 13,500 psi for the intact sections of tubing. Scanning electron microscopy and metallographic examination revealed that the tubing failed due to corrosion pitting exacerbated by stress-corrosion cracking (SCC). The pitting originated on the outer surface of the tube and ranged from superficial to severe, with some pits extending through 75% of the tube's wall thickness. The SCC emanated from the pits and further reduced the service strength of the component until it could no longer sustain the operating pressure and final catastrophic fracture occurred. Corrosion-resistant coatings added after the investigation have proven effective in preventing subsequent such failures.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001775
EISBN: 978-1-62708-241-9
... to the refinery: Provided that the use of Monel 400 alloy is continued: Aeration of the system during shutdown/startup operations should be minimized by performing nitrogen purging of the tube. Stress-relief annealing of deformed components of the line should be performed prior to putting in service...
Abstract
A bent Ni-Cu Monel 400 alloy tube, which operated as part of a pipeline in a petrochemical distillery, failed by through-thickness cracking. The pipeline was used to carry a stream of gaseous hydrocarbons containing hydrochloric acid (HCl) into a reaction tower. The tower provided a caustic solution (NaOH) to remove HCl from the stream, before the latter was directed to a burner. Metallographic examination showed that the cracks were intergranular and were frequently branched. Although nominal chemical composition of the component was found within the specified range, energy dispersive x-ray analysis (EDXA) indicated significant segregation of sulfur and chlorine along the grain boundaries. Failure was attributed to hypochlorous-acid (HClO)-induced stress-corrosion cracking (SCC). The HClO was formed by the reaction of HCl with atmospheric O 2 that entered the tube during shutdowns and startups. Residual stresses, originating from in situ bend forming of the tube during assembly of the line, provided a driving force for crack growth, and the segregation of sulfur on grain boundaries made the material more susceptible to cracking.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001536
EISBN: 978-1-62708-229-7
.... Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in service. The failures discussed are (1) intergranular stress-corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube...
Abstract
Argonne National Laboratory has conducted analyses of failed components from nuclear power-generating stations since 1974. The considerations involved in working with and analyzing radioactive components are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in service. The failures discussed are (1) intergranular stress-corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressurized water reactor, (3) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (4) failure of pump seal wear rings by nickel leaching in a boiling water reactor.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001658
EISBN: 978-1-62708-229-7
... was not known; bulk chemical analysis had simply shown that iron was a major component. Optical microscopy and electron microprobe analysis were used to identify the deposits. In the first instance, the deposit was found to be debris that was left in the reheater tubes during boiler modification and swept...
Abstract
The intermediate pressure (IP) turbine of a thermal generating station is driven by steam from the boiler's reheater. On one particular IP turbine, a thick deposit was found on the insides of the rotor blade shrouds in two instances two years apart. The source of the deposits was not known; bulk chemical analysis had simply shown that iron was a major component. Optical microscopy and electron microprobe analysis were used to identify the deposits. In the first instance, the deposit was found to be debris that was left in the reheater tubes during boiler modification and swept to the turbine by the steam. There were still some of these debris particles present when the incident two years later was investigated but generally the second deposit was found to be of two layer oxide particles which were shown to have spalled from 2-14% chromium reheater tube surfaces.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001392
EISBN: 978-1-62708-231-0
... in an oxidizing or corrosive environment. The cracking in this particular case was due principally to the inordinately large gap between the components. Additionally, several of the sealing welds of the tubes to the back tube plate were cracked in a radial manner, and it would appear that in addition, abnormal...
Abstract
Following leakage which developed within the furnace of a horizontal multi-tubular type boiler, examination revealed a series of cracks adjacent to the stiffening rings in the first plain furnace ring. The fire-side surface of the sample was coated with a layer of oxide scale. Microscopical examination of sections through the cracks showed them to be filled with oxide and to be of the multi-branched type, having blunt terminations. The general nature of the cracks was characteristic of cracking from thermal or corrosion fatigue, as results from the operation of varying stresses in an oxidizing or corrosive environment. The cracking in this particular case was due principally to the inordinately large gap between the components. Additionally, several of the sealing welds of the tubes to the back tube plate were cracked in a radial manner, and it would appear that in addition, abnormal thermal conditions may well have been experienced intermittently in service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001545
EISBN: 978-1-62708-236-5
.... Failure was actually caused by overload. Had the original conclusion been accepted, a relatively exotic alloy would have been specified. In another case, brass heat exchanger tube failure was automatically attributed to attack by an acidic cleaner, and a decision was made to stop using the solution...
Abstract
The presence of secondary, branching intergranular stress-corrosion cracking in a type 440C stainless bearing caused the analyst to overlook the real culprit, which was a mechanically-initiated, primary transgranular crack that propagated through the steel's hard chromium carbide. Failure was actually caused by overload. Had the original conclusion been accepted, a relatively exotic alloy would have been specified. In another case, brass heat exchanger tube failure was automatically attributed to attack by an acidic cleaner, and a decision was made to stop using the solution. A more thorough analysis showed failure was caused by tube vibration. In a third case, a type 304 stainless steel bellows in a test loop was thought to have failed because of chloride stress corrosion. The report concluded with a recommendation that carbon steel be used as an alternative bellows material. Caustic, not chloride, stress corrosion was the culprit. Had material substitutions been made on the original premise of countering chloride stress corrosion, most of the loop's highly stressed components would have eventually failed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0089722
EISBN: 978-1-62708-217-4
... Abstract A welded elbow assembly (AISI type 321 stainless steel, with components joined with ER347 stainless steel filler metal by gas tungsten arc welding) was part of a hydraulic-pump pressure line for a jet aircraft. The other end of the tube was attached to a flexible metal hose, which...
Abstract
A welded elbow assembly (AISI type 321 stainless steel, with components joined with ER347 stainless steel filler metal by gas tungsten arc welding) was part of a hydraulic-pump pressure line for a jet aircraft. The other end of the tube was attached to a flexible metal hose, which provided no support and offered no resistance to vibration. The line was leaking hydraulic fluid at the nut end of the elbow. Investigation supported the conclusion that failure was by fatigue cracking initiated from a notch at the root of the weld and was propagated by cyclic loading of the tubing as the result of vibration and inadequate support of the hose assembly. Recommendations included changing the joint design from a cylindrical lap joint to a square-groove butt joint. Also, an additional support was recommended for the hose assembly to minimize vibration at the elbow.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube...
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047181
EISBN: 978-1-62708-233-4
... Abstract Hydraulic cylinder housings were being fabricated from 4140 grade seamless steel tubing. During production, magnetic-particle inspection indicated the presence of circumferential and longitudinal cracks in a large number of cylinders. Analysis (visual inspection, dye penetrant...
Abstract
Hydraulic cylinder housings were being fabricated from 4140 grade seamless steel tubing. During production, magnetic-particle inspection indicated the presence of circumferential and longitudinal cracks in a large number of cylinders. Analysis (visual inspection, dye penetrant inspection, 50x/90x/400x SEM micrographs, and metallographic analysis) supports the conclusion that the cracking problem in these components was identified as quench cracks due to their brittle, intergranular nature and the characteristic temper oxide on the fracture surfaces. Although the steel met the compositional requirements of SAE 4140, the sulfur level was 0.022% and would account for the formation of the sulfide stringers observed. Apparently, the combination of the clustered, stringer-type inclusions and the quenching conditions were too severe for this component geometry. The result was a high incidence of quench cracks that rendered the parts useless. Recommendations included changing the specification, requiring the steel to have lower sulfur concentrations. Magnetic-particle cleanliness standards should be imposed that will exclude material with harmful clusters of sulfide stringers, for example, modified AMS 2301.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003526
EISBN: 978-1-62708-180-1
... analysis microelectronics piping pressure vessel FAILURE of a structural or mechanical component usually can be associated with materials-related problems and/or design-related problems (which may include, depending on the definition of design, unexpected service environment). Materials failure...
Abstract
This article provides information on the development of finite element analysis (FEA) and describes the general-purpose applications of FEA software programs in structural and thermal, static and transient, and linear and nonlinear analyses. It discusses special-purpose finite element applications in piping and pressure vessel analysis, impact analysis, and microelectronics. The article describes the steps involved in the design process using the FEA. It concludes with two case histories that involve the use of FEA in failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006773
EISBN: 978-1-62708-295-2
.... This article provides a general view on the applicability of finite-element modeling in conducting analyses of failed components. It highlights the uses of finite-element modeling in the area of failure analysis and design, with emphasis on structural analysis. The discussion covers the general development...
Abstract
When complex designs, transient loadings, and nonlinear material behavior must be evaluated, computer-based techniques are used. This is where the finite-element analysis (FEA) is most applicable and provides considerable assistance in design analysis as well as failure analysis. This article provides a general view on the applicability of finite-element modeling in conducting analyses of failed components. It highlights the uses of finite-element modeling in the area of failure analysis and design, with emphasis on structural analysis. The discussion covers the general development and both general- and special-purpose applications of FEA. The special-purpose applications of FEA covered are piping and pressure vessel analysis, impact analysis, and microelectronic and microelectromechanical systems analysis. The article provides case histories that involved the use of FEA in failure analysis.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001590
EISBN: 978-1-62708-228-0
... is a strongly endothermic process. Heat is therefore required for the reaction, as well as for elevation of the reaction temperature. Steam reforming can take place in a tubular reformer. A mixture of methane and steam at 500 °C (930 °F) and 30 bar (435 psi) flows through a number of catalyst-filled tubes...
Abstract
This case study demonstrates that Alloy 601 (UNS N06601) is susceptible to strain-age cracking. The observation illustrates the potential importance of post weld heat treatment to the successful utilization of this alloy in certain applications.
1