Skip Nav Destination
Close Modal
By
Friedrich Karl Naumann, Ferdinand Spies
By
Tezcan Sekercioglu
Search Results for
Torsion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 254
Search Results for Torsion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001764
EISBN: 978-1-62708-241-9
... that the geometric differences between Designs 1 and 6 produce elevated levels of stress in the Design 6 fillet relative to the stress in the Design 1 fillet. For a static torsion loading of 1356 N-m (1000 ft-lbf), the maximum von Mises stress in the Design 6 fillet was 40.1% greater than the maximum von Mises...
Abstract
High failure rates in the drive shafts of 40 newly acquired articulated buses was investigated. The drive shafts were fabricated from a low-carbon (0.45%) steel similar to AISI 5046. Investigators examined all 40 buses, discovering six different drive shaft designs across the fleet. All of the failures, a total of 14, were of the same type of design, which according to finite-element analysis, produces a significantly higher level of stress. SEM examination of the fracture surface of one of the failed drive shafts revealed fatigue striations near the OD and ductile dimpling near the ID, evidence of high-cycle fatigue. Based on the failure rate and fatigue life predictions, it was recommended to discontinue the use of drive shafts with the inferior design.
Book Chapter
Crankshaft with Torsion Fatigue Fractures in Inductively Surface-Hardened Crank Pin
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001230
EISBN: 978-1-62708-236-5
... of which propagated at an angle of approximately 45 deg to the longitudinal axis, and therefore were caused by torsion stresses. Neither macroscopic nor microscopic examination determined any material or processing faults. Experience has shown that torsion vibration fractures of this kind usually appear...
Abstract
A crankshaft was overloaded on a test stand and suffered an incipient crack in the crank pin. The crack run generally parallel to the longitudinal axis and branched off at the entrance into the two fillets at the transition to the crank arm. It consisted of many small cracks, all of which propagated at an angle of approximately 45 deg to the longitudinal axis, and therefore were caused by torsion stresses. Neither macroscopic nor microscopic examination determined any material or processing faults. Experience has shown that torsion vibration fractures of this kind usually appear in comparatively short journal pins at high stresses. This crankshaft fracture was an example of the damage that is caused or promoted neither by material nor heat treatment mistakes nor by defects of design or machining, but solely by overstressing.
Book Chapter
Failure Analysis of Torsion Bar of Projectile Weaving Machine
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001810
EISBN: 978-1-62708-241-9
... Abstract Several torsion bars had failed in a projectile weaving machine and were analyzed to determine the cause. Specimens prepared from the damaged components were subjected to visual inspection, hardness testing, chemical analysis, and metallurgical evaluations. The failed torsion bars had...
Abstract
Several torsion bars had failed in a projectile weaving machine and were analyzed to determine the cause. Specimens prepared from the damaged components were subjected to visual inspection, hardness testing, chemical analysis, and metallurgical evaluations. The failed torsion bars had been fabricated from spring steel which, according to stress calculations, did not have sufficient torsional strength. Examination of the damaged parts confirmed the finding, revealing that all fractures started at a shoulder radius in an area of high stress concentration. Based on the investigation, the shoulder radius should be increased to alleviate stress and the working torsion angle of the bar should be decreased to improve safety factors.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001495
EISBN: 978-1-62708-221-1
... and thus met material specification. The failure was a result of torsional fatigue in the tensile plane, originating from one of several gouges around the splined radius of the shaft. The fatigue crack progressed for a large number of cycles before final fracture. The shaft met metallurgical requirements...
Abstract
An axle shaft in an open-pit mining truck hauling overburden failed after operating for 27,000 h. Previous failures had resulted from longitudinal shear, but this had not, bringing material quality into question. Chemical analysis verified that the part was SAE4340 Ni-Cr-Mo alloy steel and thus met material specification. The failure was a result of torsional fatigue in the tensile plane, originating from one of several gouges around the splined radius of the shaft. The fatigue crack progressed for a large number of cycles before final fracture. The shaft met metallurgical requirements and should have withstood normal operating conditions. The spacing of the gouge marks coincided with the spacing of the splines, indicative of careless assembly with the mating wheel gear.
Book Chapter
Torsional Fatigue Failure of Crane Shaft
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001468
EISBN: 978-1-62708-221-1
... Abstract In a shaft subjected to reversed torsional stresses, failure resulted from the gradual development of fatigue cracks from opposite sides of the shaft. These broke out from origins located adjacent to the fillets at the start of the square section. The remaining uncracked material which...
Abstract
In a shaft subjected to reversed torsional stresses, failure resulted from the gradual development of fatigue cracks from opposite sides of the shaft. These broke out from origins located adjacent to the fillets at the start of the square section. The remaining uncracked material which fractured at the time of the mishap was in the form of a narrow strip, situated slightly to one side of the center of the shaft. The material was a mild steel in the normalized or annealed condition, having a carbon content of approximately 0.3%. The cracking was characteristic of that resulting from torsional fatigue. Because it occurred on two different planes at 45 deg to the axis of the shaft it was due to reversals of torsional stress rather than fluctuations of unidirectional torque. Following this failure, the shafts of six other similar cranes were tested ultrasonically. Cracks to varying degree were found in all the shafts. Timely replacement was possible and the likelihood of serious accidents removed.
Image
Torsion fracture in an aluminum-silicon alloy (alloy 319-T5). Classic britt...
Available to Purchase
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 52 Torsion fracture in an aluminum-silicon alloy (alloy 319-T5). Classic brittle torsion fracture on a plane at 45° to the axis of the cylinder. Hardness, 38 HRB; tensile strength, 179 MPa (26 ksi); total elongation, 0.5%. Source: Ref 42
More
Image
Macroscale brittle torsion fracture in an aluminum-silicon alloy (alloy A35...
Available to Purchase
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 53 Macroscale brittle torsion fracture in an aluminum-silicon alloy (alloy A356 sand casting). Hardness, 38 HRB; tensile strength, 214 MPa (31 ksi); total elongation, 4%. Source: Ref 42
More
Image
Macroscale fracture surface of torsion-test specimen, where testing was don...
Available to Purchase
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 55 Macroscale fracture surface of torsion-test specimen, where testing was done so as to avoid axial stresses during testing. Source: Ref 42
More
Image
Elliptical dimples (a) on the fracture surface of ductile torsion fracture ...
Available to Purchase
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 56 Elliptical dimples (a) on the fracture surface of ductile torsion fracture of cast steels Source: Ref 42 . (b) Mode II dimples on wrought 6061-T6 aluminum tensile specimen. Courtesy of P. Werner, University of Tennessee
More
Image
Fracture obtained by first plastic straining in torsion and then straining ...
Available to Purchase
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 85 Fracture obtained by first plastic straining in torsion and then straining in tension. The fracture appearance becomes more characteristic of the first strain increment as the first strain increment increases in magnitude. Source: Ref 4
More
Image
Wolf's ear helical fracture due to torsion loading. (a) Schematic of brittl...
Available to PurchasePublished: 01 January 2002
Fig. 2 Wolf's ear helical fracture due to torsion loading. (a) Schematic of brittle torsion fracture of chalk. (b) Helical tensile fracture of oxygen-free high-conductivity copper bar prestrained in torsion to a shear strain of 4. 3×. Source (b): Ref 26
More
Image
The 260 to 315 °C (500 to 600 °F) impairment in torsion toughness in very h...
Available to PurchasePublished: 01 January 2002
Fig. 18 The 260 to 315 °C (500 to 600 °F) impairment in torsion toughness in very hard steels. Note: Reduction in toughness is not detected by hardness measurements. Source: Ref 4
More
Image
Dynamic mechanical properties of solids. (a) Torsion, (b) tension, (c) bend...
Available to Purchase
in Physical, Chemical, and Thermal Analysis of Thermoplastic Resins
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 16 Dynamic mechanical properties of solids. (a) Torsion, (b) tension, (c) bending, and (d) compression
More
Image
Laboratory ductile torsion failure reveals a flat, transverse break having ...
Available to Purchase
in Fractography of Steel Drive Cables
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Fig. 4 Laboratory ductile torsion failure reveals a flat, transverse break having smooth shear surface and microvoid formation. Magnification 510 (left) and 485 times (right).
More
Image
Laboratory brittle torsion failure shows longitudinal, or axial, crack grow...
Available to Purchase
in Fractography of Steel Drive Cables
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Fig. 5 Laboratory brittle torsion failure shows longitudinal, or axial, crack growth. Magnification 55 times.
More
Image
Typical torsion failure in production stranding or bunching of colddrawn fi...
Available to Purchase
in Fractography of Steel Drive Cables
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Fig. 6 Typical torsion failure in production stranding or bunching of colddrawn filaments of high carbon steel. Magnification 480 and 600 times.
More
Image
Torsion fatigue fractures under bearing surface (fracture origin designated...
Available to Purchase
in Crankshaft with Torsion Fatigue Fractures in Inductively Surface-Hardened Crank Pin
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 8 Torsion fatigue fractures under bearing surface (fracture origin designated by arrows). 10×
More
1