1-20 of 22 Search Results for

Titanium cladding

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001570
EISBN: 978-1-62708-220-4
... Abstract Corrosion failure occurred in a titanium clad tubesheet because of a corrosive tube-side gas-liquid mixture leaking through fatigue cracks in the seal welds at tube-to-tubesheet joints. The tubesheet was a carbon steel plate clad with titanium on the tube side face. The seal weld...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001216
EISBN: 978-1-62708-217-4
... of the sheet as a result of play between the stamping cylinder and the anvil head (ringed dimple). Frequently, overlapping of several defects occurs, especially with steel or titanium sheet, with the result that it is difficult to identify the defects. Dimpling Sheet metal Stamping AlZnMgCu 1.5...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006813
EISBN: 978-1-62708-329-4
... of corrosion in heat exchangers may be achieved through the following actions: Use of corrosion-resistant and/or clad metal (bimetal) materials if possible Use of fluids with corrosion inhibitors Good design practices, such as avoiding crevices and stagnant fluid zones, selecting adequate materials...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... stages; the intention was to forestall corrosion fatigue failures in the location where steam first becomes wet and impurities are concentrated. Titanium alloys, exemplified by Ti-6Al-4V, are widely used as blading in small industrial turbines in the United States and elsewhere, and as long blades...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
... metals to ceramics. Procedures for brazing various materials such as cast irons, steels, stainless steels, heat-resistant alloys, aluminum alloys, titanium alloys, copper alloys, reactive and refractory metals, and carbon and graphite are described in Welding, Brazing, and Soldering , Volume 6...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium. aluminum alloys austenitic stainless steel carbon...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... caustic solutions High-nickel alloys High-purity steam Alpha brass Ammoniacal solutions, chloramine, amine Aluminum alloys Aqueous chloride, bromide, and iodide solutions Titanium alloys Aqueous chloride, bromide, and iodide solutions; organic liquids; N 2 O 4 Magnesium alloys Aqueous...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
... of soldered or brazed joints, depth of penetration of welds, or occurrence of gas porosity can be revealed by proper sectioning. A critical combination of strain and subsequent heating can occasionally cause excessive grain growth. This has occurred in copper tubing, aluminum alloy tubing, or copper-clad...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001814
EISBN: 978-1-62708-241-9
... Max Chromium 21.69 19.5–23.5 Nickel 42.22 38.0–46.0 Molybdenum 3.46 2.5–3.5 Copper 1.70 1.5–3.0 Aluminum 0.10 0.2 Max Titanium 1.02 0.6–1.2 Iron Balance 22.0 min Composition of Material Deposits Material deposits from the top hat and the quench lines...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
... location, traces of potassium and titanium were found. Analyses of other areas did not disclose definitive evidence of contaminants to support SCC as the failure mechanism. Fig. 10 Fracture surface of mechanical test specimen from piping cross. Fracture is intergranular. The coarse grain size...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
..., with a penetration of 0.2 to 0.8 mm (0.008 to 0.031 in.) in 50 to 55 days, in nickel alloys at 650 to 700 °C (1200 to 1300 °F). Nickel-chromium alloys containing titanium, niobium, and aluminum are better than basic nickel-chromium alloys in carbon dioxide atmospheres at 700 to 800 °C (1300 to 1470 °F). The alumina...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
...) Sioux City Incident ( Ref 14 ) 1989 Hard alpha case present in titanium fan disk resulted in fatigue crack initiation and catastrophic failure. Increased process controls on processing of titanium ingots Development of probabilistic design approach and analytical life assessment using dedicated...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... and can be adversely affected by more noble materials. The fact that they polarize readily tends to reduce their galvanic effects on less noble materials. Reactive Metals (Titanium, Zirconium, and Tantalum) Reactive metals (titanium, zirconium, and tantalum) are extremely noble because...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
... ). Fig. 15 Solid-particle-erosion-damaged compressor blades (titanium alloy) from flight service. The white dashed lines indicate the approximate original contour of the airfoils. The leading edges are facing left, as shown. Note the greater extent of material loss at the trailing edges, where low...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... corrosion and multiple fatigue crack-initiation sites in riveted fuselage skin Improved aircraft maintenance and inspection procedures Life assessment methods developed for multiple-site damage Sioux City incident ( Ref 15 ) 1989 Hard alpha inclusion present in titanium fan disk resulted in fatigue...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
..., they occupy a more active position and can be adversely affected by more noble materials. The fact that they polarize readily tends to reduce their galvanic effects on less noble materials. Reactive Metals (Titanium, Zirconium, and Tantalum) Reactive metals (titanium, zirconium, and tantalum...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... essentially inert and act as if they were noble metals such as platinum and gold. Fortunately, from an engineering standpoint, the metals most susceptible to this kind of behavior are the common engineering and structural materials, including iron, nickel, silicon, chromium, titanium, and alloys containing...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2