1-20 of 284

Search Results for Titanium

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001570
EISBN: 978-1-62708-220-4
... Abstract Corrosion failure occurred in a titanium clad tubesheet because of a corrosive tube-side gas-liquid mixture leaking through fatigue cracks in the seal welds at tube-to-tubesheet joints. The tubesheet was a carbon steel plate clad with titanium on the tube side face. The seal weld...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001660
EISBN: 978-1-62708-236-5
... pins ( Figure 3 ). The shear bands form during the rolling of the pin threads. Titanium alloys are known to have a high propensity for shear band formation owing to their high strength and low thermal conductivity [ 3 ]. It has been reported that shear band formation in Ti-6Al-4V alpha-beta alloys...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048421
EISBN: 978-1-62708-226-6
... Abstract Wear on a titanium screw head with a lip of material that that was transported by fretting at a plate-hole edge was studied. A flat fretting zone was visible on the screw surface over the material lip. A cellular wear structure containing wear debris was found. No morphological signs...
Book Chapter

Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048757
EISBN: 978-1-62708-234-1
... Abstract Brief overheating of the 89 mm OD 6.4 mm wall thickness titanium heater tubes (ASTM B337, grade 2) was caused by a flow stoppage in a leach heater. Blue-tinted areas and patches of flaky white, yellow, and brown oxide scale was revealed on visual examination. It was disclosed...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001649
EISBN: 978-1-62708-234-1
... Abstract Two titanium alloy wing attachment bolts from a commercial jetliner failed during the course of a routine service operation. Failure of the bolts occurred during the re-torque process as the wing was being reattached. Metallurgical failure analysis indicated that the fracture mechanism...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001685
EISBN: 978-1-62708-235-8
...-0.8Ti Hydrogen damage and embrittlement Heat treating-related failures Introduction Components requiring a combination of high strength and reasonably good ductility are often made from the uranium-0.8 wt % titanium (U-0.8 Ti) alloy. Typically, these alloys are processed by vacuum solution...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001265
EISBN: 978-1-62708-215-0
... backing of the polyethylene tibial component. Porous-coated and uncoated tibial trays had failed. Applications Titanium alloy knee prostheses are used to replace the articulating surface of diseased or damaged knee joints to restore as much natural function as possible. Atypical knee prosthesis...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001269
EISBN: 978-1-62708-215-0
... homogenization of the carbides in the resultant hob, and lower sulfur content. Carbides Coatings Hobbing cutters Microstructural effects Sulfur Wear M2 UNS T11302 Brittle fracture Background A gear manufacturer reported recurring premature failures of titanium nitrided M2 tool steel gear...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001359
EISBN: 978-1-62708-215-0
... Abstract The cause of low fatigue life measurements obtained during routine fatigue testing of IMI 550 titanium alloy compressor blades used in the first stage of the high-pressure compressor of an aeroengine was investigated. The origin of the fatigue cracks was associated with a spherical...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047681
EISBN: 978-1-62708-229-7
... Abstract A fluorescent liquid-penetrant inspection of an experimental stator vane of a first-stage axial compressor revealed the presence of a longitudinal crack over 50 mm (2 in.) long at the edge of a resistance seam weld. The vane was made of titanium alloy Ti-6Al-4V (AMS 4911). The crack...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001782
EISBN: 978-1-62708-241-9
... Abstract The head on a golf club driver developed multiple cracks during normal use. The head was a hollow shell construction made from a titanium alloy. Analysis and additional investigation revealed a progressive failure that initiated on the interior surface of the face plate along a deep...
Image
Published: 01 January 2002
Fig. 43 Effect of Δ K on fatigue fracture mechanisms. (a) Alpha-beta titanium alloy. (b) EN-24 and 300 M steels. (c) 17-4 PH stainless steel. Source: Ref 31 More
Image
Published: 01 January 2002
Fig. 58 Gas porosity in electron beam welds of low-carbon steel and titanium alloy. (a) Gas porosity in a weld in rimmed AISI 1010 steel. Etched with 5% nital. 30×. (b) Massive voids in weld centerline of 50 mm (2 in.) thick titanium alloy Ti-6Al-4V. 1.2× More
Image
Published: 01 January 2002
Fig. 15 Titanium heat-exchanger tube (ASTM B337, grade 2) that became embrittled and failed because of absorption of hydrogen and oxygen at elevated temperatures. (a) Section of the titanium tube that flattened as a result of test per ASTM B 337; the first crack was longitudinal along the top More
Image
Published: 01 January 2002
Fig. 12 Shear fracture of a commercially pure titanium screw. (a) SEM fractograph showing spiral textured fracture surface of sheared-off screw. Typical deformation lines are fanning out on the thread. (b) Uniformly distributed shearing tongues and dimples More
Image
Published: 01 January 2002
Fig. 26 Specimen surface of recrystallized titanium at fracture edge. Specimen was fatigued at a stress of 600 MPa (87 ksi) in air. Twinning, wavy glide deformation, and grain-boundary distortion are visible on this relatively heavily loaded specimen. Polarized light. 330× More
Image
Published: 01 January 2002
Fig. 27 Fracture surface of commercially pure titanium test specimens that failed at an applied stress level of 600 MPa (87 ksi) in air. (a) Very fine fatigue striations. (b) Coarse fatigue striations probably in transition to glide bands. (c) Overload tearing structures More
Image
Published: 01 January 2002
Fig. 28 Fatigue-fracture surface of broken commercially pure titanium bone plate with mixed fracture morphology. (a) Fracture surface shows fatigue striations, terraces, and tearing ridges, depending on the local crystallographic orientation. 250×. (b) Higher magnification view of the area More
Image
Published: 01 January 2002
Fig. 32 Wear on head of titanium screw. (a) Material transport and fretting zone. (b) Close-up view of wear structures showing fine wear products. 120×. (c) Wear structures showing generation of small wear particles. 1200×. (d) Wear structures with additional fretting structures. 305× More
Image
Published: 01 January 2002
Fig. 10 Severely hydrided unalloyed titanium More