Skip Nav Destination
Close Modal
Search Results for
Ti6Al4V (titanium-aluminum-vanadium alloy)
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2 Search Results for
Ti6Al4V (titanium-aluminum-vanadium alloy)
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001782
EISBN: 978-1-62708-241-9
... club fracture atmospheric contamination titanium alloy cracking concentric grooves SEM/EDS analysis grain size Ti6Al4V (titanium-aluminum-vanadium alloy) UNS R56406 Introduction The relative low density, high strength, and corrosion resistance of titanium alloys make them well-suited...
Abstract
The head on a golf club driver developed multiple cracks during normal use. The head was a hollow shell construction made from a titanium alloy. Analysis and additional investigation revealed a progressive failure that initiated on the interior surface of the face plate along a deep, concentric groove created during a press forming operation. It was also determined that atmospheric contamination occurred during the welding of the head, causing embrittlement, which may have also contributed to the failure. Recommendations were made addressing the problems that were observed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001803
EISBN: 978-1-62708-241-9
.... orthopedic implant devices fracture corrosion inclusions and stress gaps medical materials cracking fretting pitting fractography fracture toughness Ti6Al4V (titanium-aluminum-vanadium alloy) UNS R56406 316L stainless steel (austenitic wrought stainless steel) UNS S31603 Introduction...
Abstract
Metallurgical SEM analysis provides many insights into the failure of biomedical materials and devices. The results of several such investigations are reported here, including findings and conclusions from the examination a total hip prosthesis, stainless steel and titanium compression plates, and hollow spinal rods. Some of the failure mechanisms that were identified include corrosive attack, corrosion plus erosion-corrosion, inclusions and stress gaps, production impurities, design flaws, and manufacturing defects. Failure prevention and mitigation strategies are also discussed.