1-20 of 603

Search Results for Tempering

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001185
EISBN: 978-1-62708-228-0
... Abstract U-shaped leaf springs, intended to serve as spacers between oil tank floats and the inner walls of the containers, broke while being fitted, or after a short time in use, in the bend of the U. The springs were made of tempered strip steel of type C 88 with 0.84 % C, bent at room...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001259
EISBN: 978-1-62708-233-4
Image
Published: 01 January 2002
Fig. 14 Isothermal diagram showing the sequence of carbide formation on tempering of normalized 2 1 4 Cr-1Mo steel. Source: Ref 12 More
Image
Published: 01 January 2002
Fig. 17 Stress distribution in a cylinder after tempering. (a) t = 2 h. (b) Assume t = ∞. More
Image
Published: 15 January 2021
Fig. 17 Isothermal diagram showing the sequence of carbide formation on tempering of normalized 2.25Cr-1Mo steel. Source: Ref 22 More
Image
Published: 30 August 2021
Fig. 19 Notch toughness as a function of tempering temperature for a 4140 steel. Tempering time was 1 h. More
Image
Published: 01 June 2019
Fig. 5 Hardness vs. tempering temperature, Alloy 410 tempered for 2 h 17 More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001126
EISBN: 978-1-62708-214-3
... Abstract The spontaneous breakage of tempered glass spandrel panels used to cover concrete wall panels on building facades was investigated. Between January 1988 and August 1990, 19 panel failures were recorded. The tinted panels were coated on their exterior surfaces with a reflective metal...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0089534
EISBN: 978-1-62708-223-5
... by metallographic examination to be case carburized. The case was found to be martensite with small spheroidal carbides while the core consisted of martensite plus some ferrite. The fracture was revealed to be related to shrinkage porosity. Tempering was revealed to be probably limited to about 150 deg C...
Book Chapter

By D. Aliya
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001642
EISBN: 978-1-62708-235-8
... made, because calculations of ideal critical diameter and analysis of available hardenability data indicated that the original hardness specification could be met. There was, however, less room for process variation. The parts ended up containing temper carbides, developed heavy decarburization...
Book Chapter

By Jon L. Dossett
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated...
Book Chapter

Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0089572
EISBN: 978-1-62708-218-1
... and tempering to achieve better mechanical properties. Brittle fracture Casting defects Cracking (fracturing) Equilizer beams Foundry practice Gating and risering Normalizing (heat treatment) Tempering Trucks ASTM A148 grade 105-85 UNS D50850 Casting-related failures Heat treating-related...
Image
Published: 01 January 2002
Fig. 9 Two hardened-and-tempered 1070 steel hold-down clamps. The clamp at top was acceptable. The clamp at bottom was slack quenched because of faulty loading practice (stacking), and it failed by distortion (flattening) because of the resultant mixed microstructure. More
Image
Published: 01 January 2002
Fig. 6 Punch made of AISI S7 tool steel that cracked during quenching. Temper color was observed on the crack walls. Cracking was promoted by and located by the very coarse machining marks. Magnetic particles have been used to emphasize the cracks. 0.5× More
Image
Published: 01 January 2002
Fig. 10 Grinding cracks caused by failure to temper a part. (a) Two dies made from AISI D2 tool steel that cracked after finish grinding (cracks accentuated with magnetic particles). (b) Macroetching (10% aqueous nitric acid) of the end faces revealed grinding scorch. These dies were More
Image
Published: 01 January 2002
Fig. 50 Fractographic analysis of failed Charpy specimens of 4340 steel tempered to various strength levels. The upper curve represents room-temperature specimens; the lower curve represents specimens broken at −196 °C (−320 °F). All percentages are estimated. Source: Ref 69 More
Image
Published: 01 January 2002
Fig. 20 Beach marks on (a) quenched-and-tempered alloy steel pin fractured in low-cycle fatigue ( Ref 4 ), and on (b) maraging steel stud fractured in the laboratory by stress-corrosion cracking under steady load ( Ref 16 ). The presence of beach marks is indicative of progressive cracking More
Image
Published: 01 January 2002
Fig. 16 Mechanical properties of quenched and tempered low-alloy steel (0.30–0.50 wt% C) as determined by Patton. Source: Ref 11 More
Image
Published: 01 January 2002
Fig. 17 Mechanical properties of quenched and tempered low-alloy steel (0.30–0.45 wt% C) as determined by Janitsky and Baeyertz. Source: Ref 12 More
Image
Published: 01 January 2002
Fig. 18 Mechanical properties of quenched and tempered plain carbon and Ni-Cr-Mo steels. Source: Ref 13 More