Skip Nav Destination
Close Modal
Search Results for
Taper roller bearings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 32 Search Results for
Taper roller bearings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 5 Tapered-roller bearing damaged by electrical pitting. (a) Fluting damage caused by continuous passage of electrical current. (b) A roller from (a) polished on the outside diameter and etched with nital to show the many individual arc marks that led to the destruction of the raceway
More
Image
Published: 01 January 2002
Fig. 14 An example of burnup with plastic flow in a tapered-roller bearing. This type of failure may result from loss of lubrication or gross overload. The damage begins as heat generation followed by scoring, and if the lubricant is not replenished or the load reduced, the excessive heat
More
Image
Published: 01 January 2002
Fig. 17 Microspalling (peeling) on a tapered-roller bearing caused by a thin lubricant film compared to the composite surface roughness. (a) Cup showing fatigue on the peaks of surface texture. (b) Cone showing fatigue on the peaks of surface texture. (c) Roller with a general spalled area
More
Image
Published: 01 January 2002
Fig. 25 Bulk damage to a stationary tapered-roller bearing cone resulting from gross impact loading that yielded the cone material and cracked the case-carburized surface. Source: Ref 7
More
Image
in Failure Analysis of Railroad Components
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 2 Tapered roller bearing nomenclature. Note: The blue arrow indicates the inner seal wear ring position; the journal is colored blue for clarity. Source: Ref 1
More
Image
in Failure Analysis of Railroad Components
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Image
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 29 Two failure cases showing the effect of misalignment or tilting moments on rolling-element bearings. (a) Deep-groove ball bearing with rotating outer ring. (b) Tapered roller bearing with rotating outer ring. Source: Ref 24
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001741
EISBN: 978-1-62708-234-1
... was designed to handle soft lignite coals but had been used to crush hard deep-mined anthracite coals. Anthracite Crushers Lignite Loads (forces) Taper roller bearings Carburized steel Rolling-contact wear Metallographic evidence of microstructural features in the shape of ‘butterflies’ ( Fig...
Abstract
Butterfly-shaped microstructural features in tempered martensite in an otherwise clean steel suggested that overloading led to premature spalling of a coal-crushing plant taper bearing. Extensive rolling contact fatigue occurred because of the overload condition. The crusher was designed to handle soft lignite coals but had been used to crush hard deep-mined anthracite coals.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
... ball bearings for a given envelope size and are usually used in moderate-speed heavy-duty applications. However, in recent years, improved materials and special designs have allowed use of cylindrical and tapered-roller bearings in high-speed applications. The principal types of roller bearings...
Abstract
Rolling-element bearings use rolling elements interposed between two raceways, and relative motion is permitted by the rotation of these elements. This article presents an overview of bearing materials, bearing-load ratings, and an examination of failed bearings. Rolling-element bearings are designed on the principle of rolling contact rather than sliding contact; frictional effects, although low, are not negligible, and lubrication is essential. The article lists the typical characteristics and causes of several types of failures. It describes failure by wear, failure by fretting, failure by corrosion, failure by plastic flow, failure by rolling-contact fatigue, and failure by damage. The article discusses the effects of fabrication practices, heat treatment and hardness of bearing components, and lubrication of rolling-element bearings with a few examples.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001513
EISBN: 978-1-62708-232-7
... Abstract While in the stationary mode, capillary action at the contact line between roller and race in a steel rolling mill taper bearing caused a concentration of lubricant and moisture to occur. This lead to lines of corrosion pits at roller intervals. During subsequent operation...
Abstract
While in the stationary mode, capillary action at the contact line between roller and race in a steel rolling mill taper bearing caused a concentration of lubricant and moisture to occur. This lead to lines of corrosion pits at roller intervals. During subsequent operation, the individual corrosion pits acted as stress raisers and initiated coarse grain spalling. Due to a bending moment on the rotating element, this in turn initiated bending fatigue normal to the longitudinal axis, which propagated through to the bore of the inner ring. Stain marks were visible in the bore at a spacing corresponding to roller intervals where lubricant had flowed through the cracks from the race.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006837
EISBN: 978-1-62708-329-4
... cartridge-style tapered roller bearings, and an axle. The arrangement is shown in Fig. 1 . Note that there are no bearings applied to the journals in Fig. 1 ; bearing nomenclature is shown in Fig. 2 . Fig. 1 Wheelset nomenclature Fig. 2 Tapered roller bearing nomenclature. Note: The blue...
Abstract
Because of the tough engineering environment of the railroad industry, fatigue is a primary mode of failure. The increased competitiveness in the industry has led to increased loads, reducing the safety factor with respect to fatigue life. Therefore, the existence of corrosion pitting and manufacturing defects has become more important. This article presents case histories that are intended as an overview of the unique types of failures encountered in the freight railroad industry. The discussion covers failures of axle journals, bearings, wheels, couplers, rails and rail welds, and track equipment.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
... for tapered roller bearings, metric series ISO 578 for inch tapered roller bearings ISO 104 for axial bearings The REB nomenclature is based on: REB nomenclature = Prefix + Series of REB ( structure ) + Series of widths + Series of outer...
Abstract
This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface engineering. The article presents the nomenclature, numbering systems, and worldwide market of REBs as well as provides description of REBs as high-tech machine components. It discusses heat treatments, performance, and properties of bearing materials. The processes involved in the examination of failed bearings are also explained. Finally, the article discusses in detail the characteristics and prevention of the various types of failures of REBs: wear, fretting, corrosion, plastic flow, rolling-contact fatigue, and damage. The article includes an Appendix, which lists REB-related abbreviations, association websites, and ISO standards.
Image
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 35 Different wearing patterns observed in rolling-element bearings. (a) Smearing of the axial side of rollers and taper-shaped wear. (b) Adhesive wear of rollers under heavy sliding (unloaded roller). (c) Abrasive wear due to sliding in the entry and exit of the loaded zone. (d) Geometric
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001831
EISBN: 978-1-62708-241-9
... C37800 (copper-zinc-lead (brass) alloy) Introduction Rolling-element bearings with diverse variants including ball, needle, cylindrical roller, spherical roller, tapered roller, etc. are the most widely used type of bearings because of their excellent tradeoff between size, cost, and performance...
Abstract
An air blower in an electric power plant failed unexpectedly when a roller bearing in the drive motor fractured along its outer ring. Both rings, as well as the 18 rolling elements, were made from GCr15 bearing steel. The bearing also included a machined brass (MA/C3) cage and was packed with molybdenum disulfide (MoS 2 ) lithium grease. Metallurgical structures and chemical compositions of the bearing’s matrix materials were inspected using a microscope and photoelectric direct reading spectrometer. SEM/EDS was used to examine the local morphology and composition of fracture and contact surfaces. Chemical and thermal properties of the bearing grease were also examined. The investigation revealed that the failure was caused by wear due to dry friction and impact, both of which worsened as a result of high-temperature degradation of the bearing grease. Fatigue cracks initiated in the corners of the outer ring and grew large enough for a fracture to occur.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001485
EISBN: 978-1-62708-225-9
... illustrated in Figure 17 , the larger number of indentations that are present suggest that angular displacements occurred between the periods during which the stationary indentation developed. In addition, the indentations have a slightly tapered form which suggests that the axis of this race was not truly...
Abstract
Factors which may lead to premature roller bearing failure in service include incorrect fitting, excessive pre-load during installation, insufficient or unsuitable lubrication, over-load, impact load vibration, excessive temperature, contamination by abrasive matter, ingress of harmful liquids, and stray electric currents. Most common modes of failure include flaking or pitting (fatigue), cracks or fractures, creep, smearing, wear, softening, indentation, fluting, and corrosion. The modes of failure are illustrated with examples from practice.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001730
EISBN: 978-1-62708-229-7
... it, we found a circumferential crack in the shaft just below the upper radial bearing at the change in section. (The shaft, of AISI 6150, was normalized to Bhn 285.) When the machinist set the shaft up in a lathe (to machine out the crack for welding), he noted that the smaller (tapered) end was slightly...
Abstract
A shaft can crack twice before it fails. A Detroit electric plant had this experience with one in a coal pulverizer. Because the first crack rewelded partially (by friction) in service, the pulverizer remained serviceable until the second crack developed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001799
EISBN: 978-1-62708-241-9
... that high stress concentrations were associated with the scoring. The edges of the ratchet marks were tapered, which indicate that the primary load causing the failure was torsional. The size of overload zone or rapid fracture zone indicates that the shaft was not heavily stressed at the time of final...
Abstract
A high-speed pinion gear shaft, part of a system that compresses natural gas, was analyzed to determine why it failed. An abnormal wear pattern was observed on the shaft surface beneath the inner race of the support bearings. Material from the shaft had transferred to the bearing races, creating an imbalance (enough to cause noise and fumes) that operators noted two days before the failure. Macrofeatures of the fracture surface resembled those of fatigue, but electron microscopy revealed brittle, mostly intergranular fracture. Classic fatigue features such as striations were not found. To resolve the discrepancy, investigators created and tested uniaxial fatigue samples, and the microfeatures were nearly identical to those found on the failed shaft. The root cause of failure was determined to be fatigue, and it was concluded that cracks on the pinion shaft beneath the bearings led to the transfer of material.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003564
EISBN: 978-1-62708-180-1
... of about 3 mm, or 0.12 in.) were done with through cracks in precracked specimens, such as single-edge-notched specimens in three- and four-point bending or tapered double-cantilever beam specimens, or compact tension specimens. Crack lengths were monitored optically or by measuring the resistance...
Abstract
Rolling-contact fatigue (RCF) is a surface damage process due to the repeated application of stresses when the surfaces of two bodies roll on each other. This article briefly describes the various surface cracks caused by manufacturing processing faults or blunt impact loads on ceramic balls surfaces. It discusses the propagation of fatigue cracks involved in rolling contacts. The characteristics of various types of RCF test machines are summarized. The article concludes with a discussion on the various failure modes of silicon nitride in rolling contact. These include the spalling fatigue failure, the delamination failure, and the rolling-contact wear.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003563
EISBN: 978-1-62708-180-1
... diameter center rod; 3600 rpm; spring load on opposing tapered retaining rings; accelerometer coupled with a shutdown device; drip-feed lubrication; stress per ball typically 6 GPa (870 ksi) Ref 26 (e) Cylinder-to-ball testing apparatus Symmetrical arrangement of two 19 mm ( 3 4...
Abstract
A major cause of failure in components subjected to rolling or rolling/sliding contacts is contact fatigue. This article focuses on the rolling contact fatigue (RCF) performance and failure modes of overlay coatings such as those deposited by physical vapor deposition, chemical vapor deposition, and thermal spraying (TS). It provides a background to RCF in bearing steels in order to develop an understanding of failure modes in overlay coatings. The article describes the underpinning failure mechanisms of TiN and diamond-like carbon coatings. It presents an insight into the design considerations of coating-substrate material properties, coating thickness, and coating processes to combat RCF failure in TS coatings.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
1