Skip Nav Destination
Close Modal
Search Results for
Swivels
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-15 of 15 Search Results for
Swivels
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001201
EISBN: 978-1-62708-232-7
... Abstract The swivel head of a driving spindle of a four-high mill fractured. The fracture originated in a darkly stained spot on the bottom of the cylindrical part and then continued into the cylinder walls in the two directions. The fracture topography was of dendritic structure at the stained...
Abstract
The swivel head of a driving spindle of a four-high mill fractured. The fracture originated in a darkly stained spot on the bottom of the cylindrical part and then continued into the cylinder walls in the two directions. The fracture topography was of dendritic structure at the stained spot. This led to the conclusion that a shrinkage cavity was present. Metallographic examination confirmed that the fracture of the swivel head was caused or favored by a cavity.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006387
EISBN: 978-1-62708-217-4
... Abstract A routine examination on a seat ejection system found that the catapult attachment swivel fabricated from 7075-T651 aluminum alloy plate contained cracks on opposite sides of the part. This swivel, or bath tub, does not experience extreme loads prior to activation of the catapult...
Abstract
A routine examination on a seat ejection system found that the catapult attachment swivel fabricated from 7075-T651 aluminum alloy plate contained cracks on opposite sides of the part. This swivel, or bath tub, does not experience extreme loads prior to activation of the catapult system. Some loads could be absorbed however, when the aircraft is subjected to G loads. Visual examination of the part revealed that cracks through the wall thickness initiated on the inner walls of the fixture. Scanning electron microscopy (SEM) and electron optical examination revealed that the cracking pattern initiated and progressed by an intergranular failure mechanism. It was concluded that failure of the catapult attachment swivel fixture occurred by SCC. It was recommended that the 7075 aluminum ejection seat fixture be supplied in the T-73 temper to minimize susceptibility to SCC.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001745
EISBN: 978-1-62708-217-4
..., a 2000-T6 aluminum alloy swivel fitting experienced intergranular corrosion fracture as the result of stress-accelerated corrosion. Corrosion began because of a loose fit between the aluminum swivel fitting and steel tube assembly, which caused fretting. Inadequate maintenance and/or abnormal service...
Abstract
A 2000-T6 aluminum alloy bracket failed in a coastal environment because corrosive chlorides got between the bracket and attachment bolt. The material used for the part was susceptible to stress corrosion under the service conditions. Cracking may have been aggravated by galvanic action between aluminum alloy bracket and steel bolt. To preclude or minimize recurrences, fittings in service should be inspected periodically by dye penetrant for signs of cracking on the end face and within the fitting hole and protected with a suitable coating to exclude damaging chlorides. Also, a 2000-T6 aluminum alloy swivel fitting experienced intergranular corrosion fracture as the result of stress-accelerated corrosion. Corrosion began because of a loose fit between the aluminum swivel fitting and steel tube assembly, which caused fretting. Inadequate maintenance and/or abnormal service operation may have loosened the fitting.
Image
in Failure by Stress-Corrosion Cracking of an Ejection Seat Swivel
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 1 Opened crack (a) in aluminum alloy 7075-T651 ejection seat swivel fixture that failed by SCC. Note crack propagation markings that suggest the crack initiated on the inside wall of the fixture and woody appearance of the fracture. (b) Higher-magnification view of fracture surface from
More
Image
in Corrosion Cracking of Aircraft Components
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 5 On this piece of the failed swivel fitting, A, indicates intergranular fracture and B, ductile zone. Material: 2000 series aluminum, T6 condition.
More
Image
in Corrosion Cracking of Aircraft Components
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 6 On the plane, the swivel fitting assembly ( Fig. 5 ) is indicated by the arrow. Black line indicates position of fracture in fitting.
More
Image
in Fractured Swivel Head
> ASM Failure Analysis Case Histories: Steelmaking and Thermal Processing Equipment
Published: 01 June 2019
Fig. 1 Fractured swivel head.
More
Image
Published: 15 January 2021
Fig. 58 Model of swivel bracket reconstructed from computed tomography scan data. Isometric views
More
Image
Published: 15 January 2021
Fig. 59 Model of swivel bracket reconstructed from computed tomography scan data. (a) Front view. (b) Rear view
More
Image
Published: 15 January 2021
Fig. 60 Model of swivel bracket reconstructed from computed tomography scan data. (a) Top view. (b) Bottom view
More
Image
Published: 15 January 2021
Fig. 63 Top view of boat and swivel bracket section showing fracture plane
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001463
EISBN: 978-1-62708-224-2
... Abstract The link which failed was a special long one connecting a grab chain to a swivel. It was made from En 14A steel and in continuous use for two years. On one of the fracture faces the chisel edge weld preparation was clearly visible and the crack progression markings present indicated...
Abstract
The link which failed was a special long one connecting a grab chain to a swivel. It was made from En 14A steel and in continuous use for two years. On one of the fracture faces the chisel edge weld preparation was clearly visible and the crack progression markings present indicated failure was due to fatigue. Macro-etched cross sections showed a lack of penetration and fusion in the weld. Fatigue cracks developed and slowly progressed through the weld metal. Fracture occurred when the remaining area of sound metal was insufficient to support the load. Lack of penetration of this magnitude could be revealed by radiography or ultrasonics but it would be difficult to detect the presence of cracks in course of development from the defects. It would be more prudent to ensure that welded links of this type were free from internal cavities before being put into service.
Image
in Corrosion Cracking of Aircraft Components
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 7 Severe intergranular corrosion cracks along grain boundaries were found in the swivel fitting ( Fig. 5 ). Keller's Etch; magnification 200 times.
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001786
EISBN: 978-1-62708-241-9
...), bed, saddle (cross slide, swivel top slide, and apron) and tailstock as shown in Fig. 1 . The main spindle has a range of 18 spindle speeds from 10 to 500 RPM ( Table 1 ). Fig. 1 Short Bed Heavy Duty Lathe Specifications of the lathe Table 1 Specifications of the lathe...
Abstract
A heavy duty facing lathe failed when the tool post caught one of the jaws on the rotating chuck, causing the spline shaft that drives the main spindle to fracture. A detailed analysis of the fracture surfaces (including fractography, metallography, and analytical stress calculations) revealed areas of damage due to rubbing with evidence of cleavage fracture on the unaffected surfaces. The results of stress analysis indicated that repeated reversals of the spindle produced stresses exceeding the fatigue limit of the shaft material. These stresses led to the formation of microcracks in a retaining ring groove that were accelerated to sudden failure when the tool post and chuck collided.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.