1-20 of 256 Search Results for

Superheaters

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001688
EISBN: 978-1-62708-234-1
... Abstract Some examples of equipment failures involving high temperature operation are presented. They include some steam generator superheater components and a pump shaft that should not have been at high temperature. Metallographic analysis is used to determine the causes of failure in each...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0048303
EISBN: 978-1-62708-236-5
... Abstract A tube in a radiant superheater, the boiler of which is coal fired, failed by creep after 17 years of service. The failed tube was specified to be made of ASME SA-213, grade T-22. Measurable swelling of the tube diameter by about 2.4 mm and tube wastage caused by corrosion or erosion...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001011
EISBN: 978-1-62708-229-7
... Abstract After some 87,000 h of operation, failure took place in the bend of a steam pipe connecting a coil of the third superheater of a steam generator to the outlet steam collector. The unit operated at 538 deg C and 135 kPa, producing 400 t/h of steam. The 2.25Cr-1Mo steel pipe in which...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001526
EISBN: 978-1-62708-229-7
... Abstract In Nov. 1998, the west superheater outlet header at an electricity generating plant began to leak steam. Subsequent investigation revealed the presence of a crack that extended for 360 deg around the full circumference of the header and through the full cross-sectional thickness. The...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048318
EISBN: 978-1-62708-234-1
... Abstract A resistance-welded carbon steel superheater tube made to ASME SA-276 specifications failed by pitting corrosion and subsequent perforation, which caused the tube to leak. The perforation was found to have occurred at a low point in a bend near the superheater outlet header. It was...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001010
EISBN: 978-1-62708-229-7
... Abstract A superheater in a generator produced 80 t/h of steam at 400 deg C and 41 kPa. Failure took place at the connection from the collector to the vent line used during start up. The material of construction was carbon steel, and the unit had 240,000 h of operation at the time of failure...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091028
EISBN: 978-1-62708-229-7
... Abstract Failure occurred in a steel superheater tube in a power plant. The tube was specified as ASTM A 213 grade T 22, and the reported operating conditions were 13 MPa (1900 psi) at 482 deg C (900 deg F). The tube carried superheated steam and was coal fired. Investigation (visual inspection...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001456
EISBN: 978-1-62708-229-7
... Abstract An unusual type of defect was discovered during hydraulic testing of a water-tube boiler after repairs to the superheater tubes following erosion from soot-blowers. When the pressure reached 700 psi, slight leakage was found to be taking place from one of the superheater tubes in a...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089734
EISBN: 978-1-62708-235-8
.... Fillet welds Flanges Headers Pipe fitting Stress concentration Superheaters Thermal stresses Weld defects ASTM A106 grade B UNS K03006 ASTM A105 grade 2 Fatigue fracture Joining-related failures A system of carbon steel headers, handling superheated water of 188 °C (370 °F) at 2 MPa (300...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048845
EISBN: 978-1-62708-229-7
... welds in the secondary superheater outlet headers (constructed of SA335-P11 material) of a major boiler were described as an example. The OD of the header was measured to detect the amount of swelling and found to have increased 1.6% since its installation. Ligament cracks extending from tube seat to...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001000
EISBN: 978-1-62708-229-7
... detected. Superheaters Tube bends 1Cr-0.5Mo Creep fracture/stress rupture Rupture occurred at a bend in a superheated steam transfer line between a header and a desuperheater of a boiler producing 230 t/h of steam at 540°C and 118 kPa. The boiler had operated for 77,000 h. The geometry of the...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001569
EISBN: 978-1-62708-229-7
... Abstract This paper reviews several fatigue failures from the waterwall, superheater, and economizer portions of the boiler, their causes and how they were mitigated and monitored. Some cases required simple field modifications by cutting or welding, repair of existing controls, and/or changes...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001669
EISBN: 978-1-62708-229-7
... Abstract As the result of a leak detected in a plate-formed header at PENELEC'S Shawville Unit No. 3, an extensive failure investigation was initiated to determine the origin of cracking visible along the longitudinal weld seam. Fabricated from SA387-D material and designed for a superheater...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001208
EISBN: 978-1-62708-229-7
...) Spindles Superheaters Welded joints 13CrMo44 X40Cr 13 Joining-related failures A spindle made of hardenable 13% chromium steel X 40 Cr 13 (Material No. 1.4034) that was fastened to a superheated steam push rod made of high temperature structural steel 13 CrMo 44 (Material No. 1.7335) by means of a...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048294
EISBN: 978-1-62708-234-1
... boiler circulation and high furnace temperatures were believed to have caused the prolonged overheating. Heat exchanger tubes Overheating Spheroidizing Superheaters 1.25Cr-0.5Mo ASME SA213-T11 Creep fracture/stress rupture Two instances of superheater rupture occurred about 10 days apart...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001001
EISBN: 978-1-62708-229-7
... Abstract Examination of the header of the third superheater of a boiler producing 150 t/h of steam at 525 deg C and 118 kPa, disclosed extensive internal cracking at the connection to the tube joining this to a safety valve. Cracking was observed within the tube and in the thickness of the...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001002
EISBN: 978-1-62708-229-7
... Abstract During the inspection of a boiler containing cracks at the superheater header connection, cracking also was detected within the main steam drum. This was fabricated from a Mn-Mo-V low-alloy steel. It operated with water and saturated steam at approximately 335 deg C. Cracking was...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048331
EISBN: 978-1-62708-229-7
... Abstract The top tube of a horizontal superheater bank in the reheat furnace of a steam generator ruptured after seven years in service. The rupture was found to have occurred in the ferritic steel tubing (2.25Cr-1Mo steel (ASME SA-213, grade T-22)) near the joint where it was welded to...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001398
EISBN: 978-1-62708-229-7
... developed was of the form known as caustic cracking. It was recommended that water for de-superheater use should be taken after the deaerator and prior to the addition of salts which may deposit or concentrate in the desuperheater. Bellows Corrosion environments Leakage Sodium hydroxide Sodium...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001609
EISBN: 978-1-62708-229-7
... the finned tube harp assemblies ( Fig. 2 ). Fig. 1 Heat-recovery steam generator Fig. 2 Feedwater economizer, finned tube harp assembly Economizers, evaporators, superheaters, and reheaters are specific heat transfer sections within the HRSG. Economizers heat the incoming boiler...