Skip Nav Destination
Close Modal
By
T.L. da Silveira, I. Le May
By
T.L. da Silveira, I. Le May
By
Helmut Thielsch, Robert Smoske, Florence Cone, Jason Husband
By
Sarah Jane Hahn, Tom Kurtz
By
Mel J. Esmacher
By
David J. Kotwica
Search Results for
Superheaters
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 103
Search Results for Superheaters
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001688
EISBN: 978-1-62708-234-1
... Abstract Some examples of equipment failures involving high temperature operation are presented. They include some steam generator superheater components and a pump shaft that should not have been at high temperature. Metallographic analysis is used to determine the causes of failure in each...
Abstract
Some examples of equipment failures involving high temperature operation are presented. They include some steam generator superheater components and a pump shaft that should not have been at high temperature. Metallographic analysis is used to determine the causes of failure in each case.
Book Chapter
Failure of a Superheater Outlet Tube
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001011
EISBN: 978-1-62708-229-7
... Abstract After some 87,000 h of operation, failure took place in the bend of a steam pipe connecting a coil of the third superheater of a steam generator to the outlet steam collector. The unit operated at 538 deg C and 135 kPa, producing 400 t/h of steam. The 2.25Cr-1Mo steel pipe in which...
Abstract
After some 87,000 h of operation, failure took place in the bend of a steam pipe connecting a coil of the third superheater of a steam generator to the outlet steam collector. The unit operated at 538 deg C and 135 kPa, producing 400 t/h of steam. The 2.25Cr-1Mo steel pipe in which failure took place was 50.8 mm in diam with a nominal wall thickness of 8 mm. It connected to the AISI 321 superheater tube by means of a butt weld and was one of 46 such parallel connecting tubes. The Cr-Mo tubing was situated outside the heat transfer zone of the superheater. The overall sequence of failure involved overheating of the Cr-Mo outlet tubes, heavy oxidation, oxide cracking on thermal cycling, thermal fatigue cracking plus oxidation, creep-controlled crack growth, and rapid plastic deformation and rupture. This failure was indicative of excess temperature of the steam coming from the heat transfer zone of the coil. It showed that many damage mechanisms may combine in the transition from fracture initiation to final failure. The presence of grain boundary sliding as an indication of creep damage was useful in the characterization of the stress level as high and showed that the process of creep was not operative throughout the life of the equipment.
Book Chapter
Cracking at a Superheater Header Connection
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001001
EISBN: 978-1-62708-229-7
... Abstract Examination of the header of the third superheater of a boiler producing 150 t/h of steam at 525 deg C and 118 kPa, disclosed extensive internal cracking at the connection to the tube joining this to a safety valve. Cracking was observed within the tube and in the thickness...
Abstract
Examination of the header of the third superheater of a boiler producing 150 t/h of steam at 525 deg C and 118 kPa, disclosed extensive internal cracking at the connection to the tube joining this to a safety valve. Cracking was observed within the tube and in the thickness of the shell wall itself. The boiler had been in operation for approximately 160,000 h and was shut down for inspection when the cracking was detected. The material involved was 2.25 Cr, 1 Mo steel, and the unit had been subjected to 115 shutdowns. Initiation of the cracks was attributed to thermal shock, caused by the periodic return of condensate along the long connecting line (some 9 m long). Propagation of the cracks was due to thermal cycling, together with periodic pressure cycles, producing growth by low cycle fatigue. This was aided by corrosion within the cracks and by the wedging action caused by corrosion deposits at their tips. The failure suggests control of dissolved solids in the boiler feedwater may have been inadequate.
Book Chapter
Failure of a Steel Superheater Tube
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091028
EISBN: 978-1-62708-229-7
... Abstract Failure occurred in a steel superheater tube in a power plant. The tube was specified as ASTM A 213 grade T 22, and the reported operating conditions were 13 MPa (1900 psi) at 482 deg C (900 deg F). The tube carried superheated steam and was coal fired. Investigation (visual inspection...
Abstract
Failure occurred in a steel superheater tube in a power plant. The tube was specified as ASTM A 213 grade T 22, and the reported operating conditions were 13 MPa (1900 psi) at 482 deg C (900 deg F). The tube carried superheated steam and was coal fired. Investigation (visual inspection, 2% nital etched 297x images, chemical analysis, and SEM fractographs) supported the conclusion that the superheater tube failed as a result of long-term overheating. Substantial creep damage reduced the strength of the tube to the point that overload failure occurred. No recommendations were made.
Book Chapter
An Unusual Defect in a Superheater Tube
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001456
EISBN: 978-1-62708-229-7
... Abstract An unusual type of defect was discovered during hydraulic testing of a water-tube boiler after repairs to the superheater tubes following erosion from soot-blowers. When the pressure reached 700 psi, slight leakage was found to be taking place from one of the superheater tubes...
Abstract
An unusual type of defect was discovered during hydraulic testing of a water-tube boiler after repairs to the superheater tubes following erosion from soot-blowers. When the pressure reached 700 psi, slight leakage was found to be taking place from one of the superheater tubes in a region where there appeared to be a split, approximately 8 in. long. What was thought to be a split was actually a pronounced fold. Microscopic examination showed that a corrosion-fatigue fissure had developed from one of the inside corners of the fold, presumably as a result of the fluctuating bending stresses to which this portion of the tube would be subjected because of the discontinuity in the tube wall. It was from this fissure that the leakage occurred. It was evident that the defect developed during the manufacture of the tube, probably in the course of a drawing or rolling operation without an internal plug. The diam of this portion of the tube was reduced by local collapse and folding of the section rather than by longitudinal extension of the tube itself.
Book Chapter
Failure Analysis of Superheater Outlet Header
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001526
EISBN: 978-1-62708-229-7
... Abstract In Nov. 1998, the west superheater outlet header at an electricity generating plant began to leak steam. Subsequent investigation revealed the presence of a crack that extended for 360 deg around the full circumference of the header and through the full cross-sectional thickness...
Abstract
In Nov. 1998, the west superheater outlet header at an electricity generating plant began to leak steam. Subsequent investigation revealed the presence of a crack that extended for 360 deg around the full circumference of the header and through the full cross-sectional thickness. The subsequent inspection of this header and the east superheater header revealed the presence of extremely severe ligament cracking. They operated at 2400 psi (16.5 MPa) and a temperature of 540deg C (1005 deg F). Both were fabricated from seamless pipe produced in accordance with ASME Specification SA-335, and the steel was Grade P22, a 2.25Cr-1Mo alloy steel. Visual and metallurgical evaluations showed the cracking in the west superheater outlet header was caused by thermal fatigue. Tube holes had served as a preferential site for thermal fatigue cracking.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001330
EISBN: 978-1-62708-215-0
... Abstract Two superheater tubes from a 6.2 MPa (900 psig) boiler failed in service because of creep rupture. One tube was carbon steel and the other was carbon steel welded to ASTM A213 Grade T22 (2.25Cr-1.0Mo) tubing. The failure in the welded tube occurred in the carbon steel section. Portions...
Abstract
Two superheater tubes from a 6.2 MPa (900 psig) boiler failed in service because of creep rupture. One tube was carbon steel and the other was carbon steel welded to ASTM A213 Grade T22 (2.25Cr-1.0Mo) tubing. The failure in the welded tube occurred in the carbon steel section. Portions of the superheater were retubed five years previously with Grade 722 material. The failures indicated that tubes were exposed to long-term overheating conditions. While the carbon steel tube did not experience temperatures above the lower transformation temperature 727 deg C (1340 deg F), the welded tube did experience a temperature peak in excess of 727 deg C (1340 deg F). The long-term overheating conditions could have been the result of excessive heat flux and /or inadequate steam flow. In addition, the entire superheater bank should have been upgraded to Grade 722 material at the time of retubing.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001341
EISBN: 978-1-62708-215-0
... Abstract An SB407 alloy 800H tube failed at a 100 deg bend shortly after startup of a new steam superheater. Three bends failed and one bend remote from the failure area was examined. Visual examination showed that the fracture started on the outside surface along the inside radius of the bend...
Abstract
An SB407 alloy 800H tube failed at a 100 deg bend shortly after startup of a new steam superheater. Three bends failed and one bend remote from the failure area was examined. Visual examination showed that the fracture started on the outside surface along the inside radius of the bend and propagated in a brittle, intergranular fashion. Chemical analysis revealed that lead contamination was a significant factor in the failure and phosphorus may have contributed. The localized nature of the cracks and minimum secondary cracking suggested a distinct, synergistic effect of applied tensile stress with the contamination. Stress analysis found that stress alone was not enough to cause failure; however the operating stresses in the 100 deg bends were higher than at most other locations in the superheater Reduced creep ductility may be another possible cause of failure. Remedial actions included reducing the tube temperature, replacing the Schedule 40 100 deg bends with Schedule 80 pipe, and solution annealing the pipe after bending.
Book Chapter
Creep Failure of a 2.25Cr-1Mo Steel Superheater Tube
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0048303
EISBN: 978-1-62708-236-5
... Abstract A tube in a radiant superheater, the boiler of which is coal fired, failed by creep after 17 years of service. The failed tube was specified to be made of ASME SA-213, grade T-22. Measurable swelling of the tube diameter by about 2.4 mm and tube wastage caused by corrosion or erosion...
Abstract
A tube in a radiant superheater, the boiler of which is coal fired, failed by creep after 17 years of service. The failed tube was specified to be made of ASME SA-213, grade T-22. Measurable swelling of the tube diameter by about 2.4 mm and tube wastage caused by corrosion or erosion were observed. Log stress versus Larson-Miller Parameter (LMP) plots were produced to assess the remaining life of the superheater. It was revealed that the estimated operating temperature of 1060 deg F was higher than the estimated design temperature of 1000 deg F and that the tube wastage had increased the actual operating stress. Tube wastage and high operating temperatures hastened the failure. A better understanding of the material condition of this superheater was recommended to verify all the suspect hot tubes.
Book Chapter
Creep Failure of a Superheater Tube Promoted by Graphitization
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001279
EISBN: 978-1-62708-215-0
... outage. Boiler tubes Graphitization Mechanical properties ASME SA219-T1A UNS K12023 High-temperature corrosion and oxidation Creep fracture/stress rupture Background Applications The superheater tubes were from a utility boiler, a base-loaded unit that had been in service for 13...
Abstract
Tube 3 from a utility boiler in service for 13 years under operating conditions of 540 deg C (1005 deg F), 13.7 MPa (1990 psi) and 1,189,320 kg/h (2,662,000 lb/h) incurred a longitudinal rupture near its 90 deg bend while Tube 4 from the same boiler exhibited deformation near its bend. Metallographic examination revealed creep voids near the rupture in addition to graphite nodules. Exposure of the SA209 Grade T1A steel tubing to a calculated mean operating temperature of 530 deg C (983 deg F) for the 13 years resulted in graphitization and subsequent creep failure in Tube 3. The deformation in Tube 4 was likely the result of steam washing from the Tube 3 failure. Graphitization observed remote from the rupture in Tube 3 and in Tube 4 indicated that adjacent tubing also was susceptible to creep failure. In-situ metallography identified other graphitized tubes to be replaced during a scheduled outage.
Book Chapter
Coal-Ash Corrosion of a Chromium-Molybdenum Steel Superheater Tube
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048331
EISBN: 978-1-62708-229-7
... Abstract The top tube of a horizontal superheater bank in the reheat furnace of a steam generator ruptured after seven years in service. The rupture was found to have occurred in the ferritic steel tubing (2.25Cr-1Mo steel (ASME SA-213, grade T-22)) near the joint where it was welded...
Abstract
The top tube of a horizontal superheater bank in the reheat furnace of a steam generator ruptured after seven years in service. The rupture was found to have occurred in the ferritic steel tubing (2.25Cr-1Mo steel (ASME SA-213, grade T-22)) near the joint where it was welded to austenitic stainless steel tubing (type 321 stainless steel (ASME SA-213, grade TP321H)). The surface temperature of the tube was found to be higher than operating temperature in use earlier. The ferritic steel portion of the tube was found to be longitudinally split and heavily corroded in the region of the rupture. A red and white deposit was found on the sides and bottom of the tube in the rupture area. The deposit was produced by attack of the steel by the alkali acid sulfate and had thinned the tube wall. It was concluded that rupture of the tube had occurred due to thinning of the wall by coal-ash corrosion. The thinned tubes were reinforced by pad welding. Type 304 stainless steel shields were welded to the stainless steel portions of the top reheater tubes and were held in place about the chromium-molybdenum steel portions of the tubes by steel bands.
Book Chapter
Rupture of Chromium-Molybdenum Steel Superheater Tubes Because of Overheating
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048294
EISBN: 978-1-62708-234-1
... boiler circulation and high furnace temperatures were believed to have caused the prolonged overheating. Heat exchanger tubes Overheating Spheroidizing Superheaters 1.25Cr-0.5Mo ASME SA213-T11 Creep fracture/stress rupture Two instances of superheater rupture occurred about 10 days apart...
Abstract
The tubes of a stationary industrial boiler, 64 mm in diam and made of 1.25Cr-0.5Mo steel (ASME SA-213, grade T-11) failed by two different types of rupture. Noticeable swelling of the tubes in the area of rupture was revealed by visual examination. The tubes with slight longitudinal splits were interpreted to have failed by stress rupture resulting from prolonged overheating at 540 to 650 deg C as the microstructure exhibited extensive spheroidization and coalescence of carbides. The larger ruptures were tensile failures that resulted from rapid overheating to 815 to 870 deg C as a completely martensitic structure was revealed at the edges of the ruptures in these tubes because of rapid quenching by escaping fluid. The prolonged-overheating failures were concluded to have been the primary ruptures and that local loss of circulation had caused rapid overheating in adjacent tubes. Poor boiler circulation and high furnace temperatures were believed to have caused the prolonged overheating.
Book Chapter
Stress-Corrosion Cracking of Stainless Steel Superheater Tubing
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001344
EISBN: 978-1-62708-215-0
... Abstract Several 304H stainless steel superheater tubes fractured in stressed areas within hours of a severe caustic upset in the boiler feedwater system. Tests performed on a longitudinal weld joint, which connected two adjacent tubes in the tertiary superheater bank, confirmed caustic-induced...
Abstract
Several 304H stainless steel superheater tubes fractured in stressed areas within hours of a severe caustic upset in the boiler feedwater system. Tests performed on a longitudinal weld joint, which connected two adjacent tubes in the tertiary superheater bank, confirmed caustic-induced stress-corrosion cracking, promoted by the presence of residual welding stresses. Improved maintenance of check valves and routine inspection of critical monitoring systems (conductivity alarms, sodium analyzers, etc.) were recommended to help avoid future occurrences of severe boiler feedwater contamination. Additional recommendations were to eliminate these short longitudinal weld joints by using a bracket assembly joint between the tubes, use a post-weld heat treatment to relieve residual welding stress or select a more stress-corrosion cracking resistant alloy for this particular application.
Book Chapter
Graphitization-Related Failure of a Low-Alloy Steel Superheater Tube
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001337
EISBN: 978-1-62708-215-0
... Abstract A carbon-molybdenum (ASTM A209 Grade T1) steel superheater tube section in an 8.6 MPa (1250 psig) boiler cracked because of long-term overheating damage that resulted from prolonged exposure to metal temperatures between 482 deg C (900 deg F) and 551 deg C (1025 deg F). The outer...
Abstract
A carbon-molybdenum (ASTM A209 Grade T1) steel superheater tube section in an 8.6 MPa (1250 psig) boiler cracked because of long-term overheating damage that resulted from prolonged exposure to metal temperatures between 482 deg C (900 deg F) and 551 deg C (1025 deg F). The outer diameter of the tube exhibited a crack (fissure) oriented approximately 45 deg to the longitudinal axis and 3.8 cm (1.5 in.) long. The inner diameter surface showed a fissure in the same location and orientation. Microstructure at the failure near the outer diameter surface exhibited evidence of creep cracking and creep void formation at the fissure. A nearly continuous band of graphite nodules was observed on the surface of the fissure. In addition to the graphite band formation, the microstructure near the failure exhibited carbide spheroidization from long-term overheating in all the tube regions examined. It was concluded that preferential nucleations of graphite nodules in a series of bands weakened the steel locally, producing preferred fracture paths. Formation of these graphite bands probably expedited the creep failure of the tube. Future failures may be avoided by using low-alloy steels with chromium additions such as ASTM A213 Grade T11 or T22, which are resistant to graphitization damage.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048318
EISBN: 978-1-62708-234-1
... Abstract A resistance-welded carbon steel superheater tube made to ASME SA-276 specifications failed by pitting corrosion and subsequent perforation, which caused the tube to leak. The perforation was found to have occurred at a low point in a bend near the superheater outlet header...
Abstract
A resistance-welded carbon steel superheater tube made to ASME SA-276 specifications failed by pitting corrosion and subsequent perforation, which caused the tube to leak. The perforation was found to have occurred at a low point in a bend near the superheater outlet header. It was found that the low points of the superheater tubes could not be completely drained during idle periods. Water-level marks were noticed on the inside surface above the area of pitting. It was revealed by microscopic examination that localized pitting had resulted from oxidation. It was concluded that water contained in the tube during shutdowns had accumulated and cumulative damage due to oxygen pitting resulted in perforation of one of the tubes. Filling the system with condensate or with treated boiler water was suggested as a corrective action. Alkalinity was suggested to be maintained at a pH of 9.0 and 200 ppm of sodium sulfite should be added to the water.
Image
Type 321 stainless steel (ASME SA-213, grade TP321H) superheater tube that ...
Available to PurchasePublished: 01 January 2002
Fig. 6 Type 321 stainless steel (ASME SA-213, grade TP321H) superheater tube that failed by thick-lip stress rupture. (a) Overall view showing a typical fishmouth rupture. Approximately 1 2 ×. (b) Unetched section from location between arrows in (a) showing extensive transverse
More
Image
Superheater tubes made of chromium-molybdenum steel (ASME SA-213, grade T-1...
Available to PurchasePublished: 01 January 2002
Fig. 13 Superheater tubes made of chromium-molybdenum steel (ASME SA-213, grade T-11) that ruptured because of overheating. (a) Tube that failed by stress rupture. (b) Resultant loss of circulation and tensile failure
More
Image
2.25Cr-1Mo steel superheater tube that failed by creep. (a) As-received fai...
Available to PurchasePublished: 01 January 2002
Fig. 16 2.25Cr-1Mo steel superheater tube that failed by creep. (a) As-received failure. (b) Microstructure of the whole tube section is spheroidized carbides in ferrite. Etched with nital. 500×
More
Image
Carbon steel superheater tube. Pitting corrosion and perforation were cause...
Available to PurchasePublished: 01 January 2002
Fig. 26 Carbon steel superheater tube. Pitting corrosion and perforation were caused by the presence of oxygenated water during idle periods.
More
Image
2.25Cr-1Mo steel superheater tube that ruptured because of thinning by coal...
Available to PurchasePublished: 01 January 2002
Fig. 28 2.25Cr-1Mo steel superheater tube that ruptured because of thinning by coal-ash corrosion.
More
1