1-20 of 24 Search Results for

Superheater headers

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001001
EISBN: 978-1-62708-229-7
... Abstract Examination of the header of the third superheater of a boiler producing 150 t/h of steam at 525 deg C and 118 kPa, disclosed extensive internal cracking at the connection to the tube joining this to a safety valve. Cracking was observed within the tube and in the thickness...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001526
EISBN: 978-1-62708-229-7
... Abstract In Nov. 1998, the west superheater outlet header at an electricity generating plant began to leak steam. Subsequent investigation revealed the presence of a crack that extended for 360 deg around the full circumference of the header and through the full cross-sectional thickness...
Image
Published: 01 June 2019
Fig. 1 Arrangement of nozzle connecting safety valve line to superheater header, showing cracking. More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001002
EISBN: 978-1-62708-229-7
... Abstract During the inspection of a boiler containing cracks at the superheater header connection, cracking also was detected within the main steam drum. This was fabricated from a Mn-Mo-V low-alloy steel. It operated with water and saturated steam at approximately 335 deg C. Cracking...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001688
EISBN: 978-1-62708-234-1
... the design called for ( 2 ). Superheater Header Stub Failures Failures had occurred in the stubs connecting the outlet header to the superheater tubes in a steam generator. The steam temperature at outlet was nominally 515°C and they had been in service for some 175,000 h. Because there was extensive...
Image
Published: 01 June 2019
Fig. 1 This is the 5-ft. long section cut from the west superheater outlet header in tube rows number 4 through 7. Subsegments of row 4 are referred to as A1, A2, A3, etc. More
Image
Published: 01 June 2019
Fig. 1 Interligament cracking in a failed secondary superheater outlet header from a boiler. More
Image
Published: 01 June 2019
Fig. 1 Cracking in the superheater outlet header associated with the longitudinal weld seam. More
Image
Published: 30 August 2021
Fig. 53 Interligament cracking in a failed secondary superheater outlet header from a boiler More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048845
EISBN: 978-1-62708-229-7
... welds in the secondary superheater outlet headers (constructed of SA335-P11 material) of a major boiler were described as an example. The OD of the header was measured to detect the amount of swelling and found to have increased 1.6% since its installation. Ligament cracks extending from tube seat...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001669
EISBN: 978-1-62708-229-7
... Abstract As the result of a leak detected in a plate-formed header at PENELEC'S Shawville Unit No. 3, an extensive failure investigation was initiated to determine the origin of cracking visible along the longitudinal weld seam. Fabricated from SA387-D material and designed for a superheater...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048318
EISBN: 978-1-62708-234-1
... Abstract A resistance-welded carbon steel superheater tube made to ASME SA-276 specifications failed by pitting corrosion and subsequent perforation, which caused the tube to leak. The perforation was found to have occurred at a low point in a bend near the superheater outlet header...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001341
EISBN: 978-1-62708-215-0
... Intergranular fracture Creep fracture/stress rupture Background A replacement steam superheater failed shortly after start-up. Applications The replacement was the same design as the original with minor changes. The tube spacer design was changed, flange connections were added to the header ends...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001609
EISBN: 978-1-62708-229-7
... Abstract Alloy 430 stainless steel tube-to-header welds failed in a heat recovery steam generator (HRSG) within one year of commissioning. The HRSG was in a combined cycle, gas-fired, combustion turbine electric power plant. Alloy 430, a 17% Cr ferritic stainless steel, was selected because...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001000
EISBN: 978-1-62708-229-7
... not be detected. Superheaters Tube bends 1Cr-0.5Mo Creep fracture/stress rupture Rupture occurred at a bend in a superheated steam transfer line between a header and a desuperheater of a boiler producing 230 t/h of steam at 540°C and 118 kPa. The boiler had operated for 77,000 h. The geometry...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001323
EISBN: 978-1-62708-215-0
... fertilizer chemical plant. Circumstances Leading up to Failure The new superheater had been installed during a recent outage. In less than six weeks, several superheater tubes started leaking. All of the leaks occurred in the first bend after steam entered the inlet header. Pertinent Specifications...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089734
EISBN: 978-1-62708-235-8
.... Fillet welds Flanges Headers Pipe fitting Stress concentration Superheaters Thermal stresses Weld defects ASTM A106 grade B UNS K03006 ASTM A105 grade 2 Fatigue fracture Joining-related failures A system of carbon steel headers, handling superheated water of 188 °C (370 °F) at 2 MPa (300...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
..., the investigation is concluded by systematic analysis and interpretation of the results and arrival at the root cause of failure. Failure of Boiler Tubes The most vulnerable components in a boiler prone to frequent failures are headers or steam pipes and boiler tubes (water-wall, screen tubes, superheater...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
... to obtain samples for laboratory examination are of utmost importance. For example, if the failure involves rupture of one or more boiler or superheater tubes, there is a high probability that adjacent tubes may have been degraded by the same conditions that led to the ruptures. Samples should be taken from...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
... Hydrotesting A 150-cm (60-in.) inside-diameter boiler drum fabricated of 18-cm (7-in.) thick ASTM A515, grade 70, steel failed during final hydrotesting at a pressure of approximately 26 MPa (3.8 ksi). The shock wave from the vessel rupture also damaged several connected headers and piping runs...