Skip Nav Destination
Close Modal
Search Results for
Structural steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 679 Search Results for
Structural steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001611
EISBN: 978-1-62708-219-8
... Abstract Cold cracking of structural steel weldments is a well-documented failure mechanism, and extensive work has been done to recognize welding and materials selection parameters associated with it. These efforts, however, have not fully eliminated the occurrence of such failures...
Abstract
Cold cracking of structural steel weldments is a well-documented failure mechanism, and extensive work has been done to recognize welding and materials selection parameters associated with it. These efforts, however, have not fully eliminated the occurrence of such failures. This article examines a case of cold cracking failure in the construction industry. Fortunately, the failure was identified prior to final erection of the structural members and the weld was successfully reworked. The article explains how various welding parameters, such as electrode/wire selection, joint design, and pre/postheating, played a role in the failure. Human factors and fabrication practices that contributed to the problem are covered as well.
Image
in Failure of a Structural Bolt Due to Reversed-Bending Fatigue
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
Fig. 1 Failure of a structural steel bolt in the rail assembly of an overhead crane. (a) Illustration of the crane rails and attendant support beams. (b) Shank portion of the failed bolt. (c) Fracture surface of the bolt showing evidence of reversed-bending fatigue
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0046155
EISBN: 978-1-62708-233-4
... to the member ( Fig. 1 ). At failure, the part was receiving the second set of loads up to 103.6% of design load. The post was made of D-6ac steel and was heat treated to a tensile strength of 1517 to 1655 MPa (220 to 240 ksi). Fig. 1 Structural member (post) of D-6ac steel that failed by fatigue...
Abstract
A structure had been undergoing fatigue testing for several months when a post-like member heat treated to a tensile strength of 1517 to 1655 MPa (220 to 240 ksi) ruptured. The fracture occurred in the fillet of the post that contacted the edge of a carry-through box bolted to the member. At failure, the part was receiving a second set of loads up to 103.6% of design load. Visual investigations showed rubbing and galling of the fillet. Microscopic and metallographic examination revealed beach marks on the fracture surface and evidence of cold work and secondary cracking in the rubbed and galled area. Electron fractography confirmed that cracking had initiated at a region of tearing and that the cracks had propagated by fatigue. Mechanical properties of all specimens exceeded the minimum values specified for the post. This evidence supports the conclusion that fatigue was the primary cause of failure. Rubbing of the faying surfaces worked the interference area on the post until small tears developed. These small tears became stress-concentration points that nucleated fatigue cracks. Recommendations included rounding the edge of the box in the area of contact with the post to ensure a tangency fit.
Image
in Fatigue Fracture of a D-6ac Steel Structural Member at the Line of Contact With Another Member
> ASM Failure Analysis Case Histories: Design Flaws
Published: 01 June 2019
Fig. 1 Structural member (post) of D-6ac steel that failed by fatigue cracking. The cracking was initiated by rubbing and galling from a mating carry-through box that was bolted to the post.
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0047113
EISBN: 978-1-62708-219-8
... Abstract A portion of a 19 mm (0.75 in.) diam structural steel bolt was found on the floor of a manufacturing shop. This shop contained an overhead crane system that ran on rails supported by girders and columns. Inspection of the crane system revealed that the bolt had come from a joint...
Abstract
A portion of a 19 mm (0.75 in.) diam structural steel bolt was found on the floor of a manufacturing shop. This shop contained an overhead crane system that ran on rails supported by girders and columns. Inspection of the crane system revealed that the bolt had come from a joint in the supporting girders and could be considered one of the principal fasteners in the track system. Analysis (visual inspection, metallographic exam, and hardness testing) supported the conclusions that fatigue induced by the overhead movement of the crane produced failure of the bolt. The bolt was deficient in strength for the cyclic applied loads in this case and probably was not tightened sufficiently. Recommendations included removing the remaining bolts in the crane support assembly and replacing them with a higher-strength, more fatigue-resistant bolt, for example, SAE grade F, 104 to 108 HRB. The bolts should be tightened according to the specifications of the manufacturer, and the system should be periodically inspected for correct tightness.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001777
EISBN: 978-1-62708-241-9
.... Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength . ASTM International , West Conshohocken ( 2011 ) 12. AISC S342. Load and Resistance Factor Design Specification for Structural Steel Buildings . American Institute of Steel Construction...
Abstract
The structural collapse of an iron-ore bucket-wheel stacker reclaimer at the beginning of operation was investigated by means of mechanical tests, microstructural characterization, and computational structural analysis. The mechanical failure was a consequence of a brittle fracture by cleavage. The crack followed the heat-affected zone of a welded joint connecting a rectangular hollow section member and a plate flange. The main factors contributing to failure were related with a combination of design-in and manufacturing-in factors like high load-strength ratio at the point of failure, local stress concentration as a result of geometry restrictions, and weld defects. This particular section was responsible for the load transfer between the front tie member and the boom extremity, and its failure was the main cause of the catastrophic failure of the equipment.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001208
EISBN: 978-1-62708-229-7
... Abstract A spindle made of hardenable 13% chromium steel X40 Cr13 (Material No. 1.4034) that was fastened to a superheated steam push rod made of high temperature structural steel 13Cr-Mo44 (Material No. 1.7335) by means of a convex fillet weld, fractured at the first operation of the rod...
Abstract
A spindle made of hardenable 13% chromium steel X40 Cr13 (Material No. 1.4034) that was fastened to a superheated steam push rod made of high temperature structural steel 13Cr-Mo44 (Material No. 1.7335) by means of a convex fillet weld, fractured at the first operation of the rod directly next to the weld bead. Investigation showed that the fracture of the superheated steam push rod spindle was caused by hardening and hardening crack formation in the weld seams and adjoining areas. It would have been preferable to avoid welding near the cross sectional transitions altogether in consideration of the crack sensitivity of high hardenability steels. If for some reason this was not possible, then all precautions should have been taken that are applicable to the particular steel, such as preheating, slow cooling and stress relief tempering after welding. The selection of an austenitic additive material should have been considered because it could have equalized stresses due to its high elongation. Most probably, however, a material of lower hardenability should have been selected for the spindle if high operating properties were of paramount importance.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001094
EISBN: 978-1-62708-214-3
... austenitic grain boundaries. Abstract Cadmium-coated type 410 martensitic stainless steel 1 4 -14 self-drilling tapping screws fractured during retorquing tests within a few weeks after installation. The screws were used to assemble structural steel frames for granite panels that formed...
Abstract
Cadmium-coated type 410 martensitic stainless steel 1 4 -14 self-drilling tapping screws fractured during retorquing tests within a few weeks after installation. The screws were used to assemble structural steel frames for granite panels that formed the outer skin of a high-rise building. Fractographic and metallographic examination showed that the fractures occurred in a brittle manner from intergranular crack propagation. Laboratory and simulated environmental tests showed that an aqueous environment was necessary for the brittle fracture/cracking phenomenon. The cracks were singular and intergranular with little branching. Secondary subsurface cracks suggested possible hydrogen embrittlement. The 410 screws had been introduced to replace conventional case-hardened carbon steel screws that conform to SAE specification J78. Carbon steel screws had a proven record of acceptable performance for the intended application. It was recommended that use of the 410 screws be discontinued in preference to the case-hardened carbon steel screws.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001210
EISBN: 978-1-62708-227-3
... or the preheating was not high enough or sufficiently uniform. This damage was therefore caused by a welding defect. Cracking (fracturing) Pipe Preheating Weld defects Welded joints Structural steel Joining-related failures In a shipyard one of the two posts of a loading gear fractured under...
Abstract
In a shipyard one of the two posts of a loading gear fractured under a comparatively small load at the point where it was welded into the ship’s deck. The post consisted of several pipe lengths that were produced by longitudinal seam welding of 27 mm thick sheets. The sheet metal was a construction steel of 60 to 75 kp/sq mm strength. Thick-walled parts of steels of such high strength must be preheated to approximately 200 deg C along the edges prior to welding to minimize the strong heat losses by the cold mass of the part. In the case under investigation this either was not done at all or the preheating was not high enough or sufficiently uniform. This damage was therefore caused by a welding defect.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001588
EISBN: 978-1-62708-221-1
... Abstract On 23 Dec 1997, a portion of the main ore conveyor at a large mine collapsed onto a highway and shut down mine operations. The conveyor structure that collapsed was supported by a steel truss spanning 185 ft. Truss failure occurred just as the conveyor transport rate was increased...
Abstract
On 23 Dec 1997, a portion of the main ore conveyor at a large mine collapsed onto a highway and shut down mine operations. The conveyor structure that collapsed was supported by a steel truss spanning 185 ft. Truss failure occurred just as the conveyor transport rate was increased to 8,260 tph. Under this total loading, which was only slightly above the regular operating condition, a poorly designed and fabricated transition joint in the west lower chord failed, thereby overloading other key structural members and causing the entire truss to collapse. Another contributing cause of the collapse was the transition joint welds, where the fracture originated. They were made with undersized fillet welds, 20% smaller than specified on the original fabrication drawing. Because of the poorly designed joint detail and the deficient welds, both of which concentrated stress and strain in the low ductility direction of the transition joint plate, lamellar tearing of plate material occurred at the boxed I-beam fillet weld attachment. Brittle fracture of this joint precipitated global collapse of the truss structure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001644
EISBN: 978-1-62708-219-8
... crack predated the single overload crack. Blades Fans Shafts (power) Structural steel Fatigue fracture In this situation, a large fan assembly deformed and broke at multiple locations. The client wanted to know whether the bearing pillow block ( Fig. 1 ) fracture had caused the actual fan...
Abstract
A large fan assembly deformed and broke at multiple locations. The user wanted to know whether the bearing pillow block fracture caused the fan blade assembly to crack, or whether a fan blade assembly fracture caused the pillow block to crack. Close inspection of the entire length of the crack showed the crack probably grew quite a while before it was large enough to cause the final catastrophic event. No evidence of fatigue cracks was visible on the broken pillow blocks. In the absence of some other contradictory information, the usual conclusion would be to presume that the fatigue crack predated the single overload crack.
Image
Published: 01 June 2019
Fig. 2 a). Edge structure of a steel with 0.73% C after 4 h annealing in wet hydrogen of 1 atm pressure, etched in picral, 100 ×. 700° C. b) Edge structure of a steel with 0.73% C after 4 h annealing in wet hydrogen of 1 atm pressure, etched in picral, 100 ×. 800° C. c) Edge structure
More
Image
Published: 01 June 2019
Fig. 4 Edge structure of a spring washer of silicon steel, broken ahead of time in a fatigue test. Cross section, etched in nital. 100 ×
More
Image
Published: 01 June 2019
Fig. 10 a). Change in structure by hydrogen attack, etched in nital. 200 ×. Steel with 0,45% C. a). Initial state. b). Change in structure by hydrogen attack, etched in nital. 200 ×. Steel with 0,45% C. 10.0 h, 400°C, 300 atü H 2 . c). Change in structure by hydrogen attack, etched in nital
More
Image
in Fracture of a Lifting Fork Arm
> ASM Failure Analysis Case Histories: Material Handling Equipment
Published: 01 June 2019
Image
in Fracture of a Lifting Fork Arm
> ASM Failure Analysis Case Histories: Material Handling Equipment
Published: 01 June 2019
Fig. 3 Structure of the steel after the heat treatment (tempered martensite), etched with Nital. 200 ×
More
Image
in Internal Cracks in Cast Steel With 9% Ni for Cryogenic Applications
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 7 Dendritric structures. (a) Steel F with 0.03% Mo. Mold thickness: 30 mm (1.2 in.). (b) Steel E, with 0.03% Mo. Mold thickness: 200 mm (8 in.). Dendritic structures. (c) Steel H, with 0.26% Mo. Moid thickness: 30 mm (1.2 in.). (d) Steel G, with 0.26% Mo. Mold thickness: 200 mm (8 in.).
More
Image
in Creep Failure Analysis of Steel Tubes
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Image
in Creep Failure Analysis of Steel Tubes
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001135
EISBN: 978-1-62708-219-8
... of this bridge was specified as ASTM A441, a steel commonly used in structural applications. Normally, the chemistry of this steel is as shown in Table 1 . Chemistry of ASTM A441 Steel. Table 1 Chemistry of ASTM A441 Steel. C Mn Si Cu S Ph V .22 .85–1.20 .4 max .2 min .05 .04 max...
Abstract
In 1979, during a routine bridge inspection, a fatigue crack was discovered in the top flange plate of one tie girder in a tied arch bridge crossing the Mississippi River. Metallographic analysis indicated a banding or segregation problem in the middle of the plate, where the carbon content was twice what it should have been. Based on this and results of ultrasonic testing, which revealed that the banding occurred in 24-ft lengths, it was decided to close the bridge and replace the defective steel. The steel used in the construction of this bridge was specified as ASTM A441, commonly used in structural applications. Testing showed an increase in hardness and weight percent carbon and manganese in the banded region. Further testing revealed that the area containing the segregation and coarse grain structure had a lower than expected toughness and a transition temperature 90 deg F higher than specified by the ASTM standards. The fatigue crack growth rate through this area was much faster than expected. All of these property changes resulted from increased carbon levels, higher yield strength, and larger than normal grain size.
1