1-20 of 130 Search Results for

Structural members

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0046155
EISBN: 978-1-62708-233-4
... Abstract A structure had been undergoing fatigue testing for several months when a post-like member heat treated to a tensile strength of 1517 to 1655 MPa (220 to 240 ksi) ruptured. The fracture occurred in the fillet of the post that contacted the edge of a carry-through box bolted...
Image
Published: 01 January 2002
Fig. 30 Filled polypropylene structural member, approximately 5 mm (0.2 in.) thick, fractured in rapid overload. Curved rib marks on such overload fractures, as at arrows, have been erroneously identified as beach marks indicative of fatigue. Courtesy of W.G. Knauss, California Institute More
Image
Published: 01 June 2019
Fig. 1 Structural member (post) of D-6ac steel that failed by fatigue cracking. The cracking was initiated by rubbing and galling from a mating carry-through box that was bolted to the post. More
Image
Published: 30 August 2021
Fig. 39 Crane structural member failure due to insufficient penetration More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089256
EISBN: 978-1-62708-235-8
... Abstract Alloy steel forgings used as structural members of a ski chair lift grip mechanism were identified to have contained forging laps (i.e., sharp-notched discontinuities) during an annual magnetic particle inspection of all chair lift grip structural members at a mountain resort...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001588
EISBN: 978-1-62708-221-1
... to 8,260 tph. Under this total loading, which was only slightly above the regular operating condition, a poorly designed and fabricated transition joint in the west lower chord failed, thereby overloading other key structural members and causing the entire truss to collapse. Another contributing cause...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001611
EISBN: 978-1-62708-219-8
.... This article examines a case of cold cracking failure in the construction industry. Fortunately, the failure was identified prior to final erection of the structural members and the weld was successfully reworked. The article explains how various welding parameters, such as electrode/wire selection, joint...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046737
EISBN: 978-1-62708-229-7
... Abstract After 14 months of service, cracks were discovered in castings and bolts used to fasten together braces, posts, and other structural members of a cooling tower, where they were subjected to externally applied stresses. The castings were made of copper alloys C86200 and C86300...
Image
Published: 01 January 2002
accumulate if the vessel is open to the atmosphere. (b) Structural members should be designed to avoid retention of liquids; L-shaped sections should be used with the open side down, and exposed seams should be avoided. (c) Incorrect trimming or poor design of seals and gaskets can create crevice sites. (d More
Image
Published: 15 January 2021
accumulate if the vessel is open to the atmosphere. (b) Structural members should be designed to avoid retention of liquids; L-shaped sections should be used with the open side down, and exposed seams should be avoided. (c) Incorrect trimming or poor design of seals and gaskets can create crevice sites. (d More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001041
EISBN: 978-1-62708-214-3
... vehicles were subjected to extensive proving ground testing, which included the most severe terrain the vehicles were expected to encounter. Critical structural members were strain-gaged to determine the actual stresses and to allow development of full-scale laboratory component testing. At periodic...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047673
EISBN: 978-1-62708-217-4
... Abstract A series of resistance spot welds joining Z-shape and C-shape members of an aircraft drop-tank structure failed during ejection testing. The members were fabricated of alclad aluminum alloy 2024-T62. The back surface of the C-shape members showed severe electrode-indentation marks off...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001777
EISBN: 978-1-62708-241-9
... analysis of the collapse of the BSR was developed through (i) a computational model of the structure that allowed for finite element structural analysis; (ii) a comparison between the numerical results of the structural analysis—members’ internal forces and stresses—and the resistance values...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006830
EISBN: 978-1-62708-329-4
... equipment in three categories: cranes and bridges, attachments used for direct lifting, and built-in members of lifting equipment. It first reviews the mechanisms, origins, and investigation of failures. Then the article describes the materials used for lifting equipment, followed by a section explaining...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001723
EISBN: 978-1-62708-221-1
... were inadequate. Two other crane failures showed that failure resulted from the use of rimming steel, and embrittlement of the material was evident. Bend tests Cranes Impact tests Loads (forces) Luders lines Rimming steels Structural members Mild steel Brittle fracture The modern...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001649
EISBN: 978-1-62708-234-1
... integrity of aircraft has been the subject of intense review recently. 1 , 2 While corrosion of structural members is of particular importance, failure of fasteners can have catastrophic repercussions as well. Changes in load path and stress distributions caused by fastener failures can produce unexpected...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001710
EISBN: 978-1-62708-229-7
... using a TIG process. Much of the sheet metal structure was about 3.2 mm (0.125 in.) thick with the extruded bar load carrying members slightly thicker. The frame structure was not designed to withstand heavy loads from lifting and twisting with many 75–100 mm (3–4 in.) skip welds used in the fabrication...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001138
EISBN: 978-1-62708-231-0
... its mounting trunnion and extended during its motion, it interfered with a frame member. This caused both a bending load and a rotational movement. These effects caused a combination of fretting, galling, and fatigue to the internal thread structure of the clevis. As a result of these deleterious...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
... for illustration. Overloading Every structure has a load limit beyond which it is considered unsafe or unreliable. Applied loads that exceed this limit are known as overloads and sometimes result (depending on the factor of safety used in design) in distortion or fracture of one or more structural members...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001811
EISBN: 978-1-62708-180-1
..., chains, wire rope, slings, beams, bales, and trunnions; and built-in members such as shafts, gears, and drums. chains cranes failed shafts hooks lifting equipment wire rope LIFTING EQUIPMENT is used for raising, lowering, and transporting materials, parts, and equipment, generally within...