Skip Nav Destination
Close Modal
By
Cássio Barbosa, Jôneo Lopes do Nascimento, José Luiz Fernandes, Ibrahim de Cerqueira Abud
Search Results for
Structural components
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 137 Search Results for
Structural components
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001812
EISBN: 978-1-62708-241-9
... of LME as a failure analysis tool is also discussed. fasteners nozzles valves fracture mercury lead cadmium zinc structural alloys cracking cleavage radiography fracture toughness 5083-O (wrought aluminum magnesium alloy) UNS A95083 10Zn-2Pb (free-machining brass...
Abstract
Several cases of embrittlement failure are analyzed, including liquid-metal embrittlement (LME) of an aluminum alloy pipe in a natural gas plant, solid metal-induced embrittlement (SMIE) of a brass valve in an aircraft engine oil cooler, LME of a cadmium-plated steel screw from a crashed helicopter, and LME of a steel gear by a copper alloy from an overheated bearing. The case histories illustrate how LME and SMIE failures can be diagnosed and distinguished from other failure modes, and shed light on the underlying causes of failure and how they might be prevented. The application of LME as a failure analysis tool is also discussed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001780
EISBN: 978-1-62708-241-9
... fracture morphologies observed in such cases and metallographic appearances of MnS-containing materials are illustrated. structural components fracture inclusions resulfurized steel stringers microstructural analysis fracture resistance AISI 11xx (resulfurized carbon steel...
Abstract
A number of failures involving carbon and alloy steels were analyzed to assess the effects of inclusions and their influence on mechanical properties. Inclusions, including brittle oxides and more ductile manganese sulfides (MnS), affect fatigue endurance limit, fatigue crack propagation rates, fracture toughness, notch toughness, and transverse tensile properties, and do so in an anisotropic manner with respect to rolling direction. Significant property anisotropy has been documented in the failures investigated, providing evidence that designers failed to account for it. Typical fracture morphologies observed in such cases and metallographic appearances of MnS-containing materials are illustrated.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001329
EISBN: 978-1-62708-215-0
... Abstract Various aluminum bronze valves and fittings on the essential cooling water system at a nuclear plant were found to be leaking. The leakage was limited to small-bore socket-welded components. Four specimens were examined: three castings (an ASME SB-148 CA 952 elbow from a small-bore...
Abstract
Various aluminum bronze valves and fittings on the essential cooling water system at a nuclear plant were found to be leaking. The leakage was limited to small-bore socket-welded components. Four specimens were examined: three castings (an ASME SB-148 CA 952 elbow from a small-bore fitting and two ASME SB-148 CA 954 valve bodies) and an entire valve assembly. The leaks were found to be in the socket-weld crevice area and had resulted from dealloying. It was recommended that the weld joint geometry be modified.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001758
EISBN: 978-1-62708-241-9
... at carbides and other microconstituents, especially in single crystal castings that do not possess grain boundaries. gas turbine engine components creep deformation overheating nickel-base superalloy interdendritic stress-rupture fracture stress-rupture testing stress-rupture life Cast...
Abstract
This article describes the visual, fractographic, and metallographic evidence typically encountered when analyzing stress rupture of turbine airfoils. Stress-rupture fractures are generally heavily oxidized, tend to be rough in texture, and are primarily intergranular and/or interdendritic in appearance compared to smoother, transgranular fatigue type fractures. Often, gross plastic yielding is visible on a macroscopic scale. Commonly observed microstructural characteristics include creep voiding along grain boundaries and/or interdendritic regions. Internal voids can also nucleate at carbides and other microconstituents, especially in single crystal castings that do not possess grain boundaries.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001401
EISBN: 978-1-62708-220-4
... Shells (structural forms) Sodium chloride Stress relieving 18-8 Stress-corrosion cracking Following disruption of the basket of a hydro-extractor used for the separation of crystals of salt (sodium chloride) from glycerine, samples of the broken parts were submitted to the Company with a view to...
Abstract
Following disruption of the austenitic stainless steel basket of a hydro-extractor used for the separation of crystals of salt (sodium chloride) from glycerin, samples of the broken parts were analyzed. Examination revealed that the fish-plates joining the reinforcing hoops had broken, the shell had split from top to bottom adjacent to the weld, the top and bottom cover plates had become loose, all the rivets having pulled out, and the shaft was also found to be bent. Fracture took place in an irregular manner and was of the shear type towards both ends; it occurred immediately adjacent to the weld or a short distance from it and on alternate sides. Microscopical examination did not reveal any intergranular carbide precipitation, such as is well known to result in the weld-decay mode of failure. It was concluded that the primary cause of failure was stress-corrosion cracking arising from the combined effect of residual stresses and the corrosive effect of the material being centrifuged. If the shell had been stress-relieved after fabrication, the failure likely would not have occurred.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001819
EISBN: 978-1-62708-241-9
... depends on the amount, shape, size, and distribution. Inclusions can act as stress raisers and thus serve as preferential sites for the nucleation of cracks [ 12 ]. Failure analysis uses several kinds of techniques to investigate the causes of failure in equipment or structures. Generally, the causes...
Abstract
The shafts on two centrifugal pumps failed during use in a petroleum refinery. Light optical microscopy and scanning electron microscopy were used to analyze the damaged materials to determine the cause of failure. The results showed that one shaft, made of duplex stainless steel, failed by fatigue fracture, and the other, made of 316 austenitic stainless steel, experienced a similar fracture, which was promoted by the presence of nonmetallic inclusion particles.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001777
EISBN: 978-1-62708-241-9
... the capacity of the component and leading to failure [ 9 , 10 ]. The structural collapse of the analyzed BSR occurred during the commissioning phase, less than 6 months after its first load test with iron ore. The failure mode was catastrophic, as observed in Fig. 1 . The global structural...
Abstract
The structural collapse of an iron-ore bucket-wheel stacker reclaimer at the beginning of operation was investigated by means of mechanical tests, microstructural characterization, and computational structural analysis. The mechanical failure was a consequence of a brittle fracture by cleavage. The crack followed the heat-affected zone of a welded joint connecting a rectangular hollow section member and a plate flange. The main factors contributing to failure were related with a combination of design-in and manufacturing-in factors like high load-strength ratio at the point of failure, local stress concentration as a result of geometry restrictions, and weld defects. This particular section was responsible for the load transfer between the front tie member and the boom extremity, and its failure was the main cause of the catastrophic failure of the equipment.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001054
EISBN: 978-1-62708-214-3
... expansion of the components. The chemistry and structure of the components and all processing procedures met rigid manufacturing specfications. The parts passed proof testing within several weeks after fabrication. Metallographic examination of similar parts revealed at least one instance of cracks...
Abstract
Silver solid-state bonded components containing uranium failed under zero or low applied load several years after manufacture. The final operation in their manufacture was a proof loading that applied a sustained tensile stress to the bond, which all components passed. The components comprised circular cylinders fabricated by plating a thin layer of silver on each of the contact surfaces (uranium and stainless steel) and pressing the parts together at elevated temperature to solid-state bond the two silver surfaces. The manufacturing process produced a high level of residual stress at the bond. The failures appeared to be predominantly located between the silver layer and the uranium substrate. Normal fracture location of specimens taken from similar components was at the silver/silver bond interface. Laboratory testing revealed that the uranium/silver joint was susceptible to premature failure by stress-corrosion cracking under sustained loading if the atmosphere was saturated with water vapor.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001265
EISBN: 978-1-62708-215-0
... Abstract Total knee prostheses were retrieved from patients after radiographs revealed fracture of the Ti-6A1-4 VELI metal backing of the polyethylene tibial component. The components were analyzed using scanning electron microscopy. Porous coated and uncoated tibial trays were found to have...
Abstract
Total knee prostheses were retrieved from patients after radiographs revealed fracture of the Ti-6A1-4 VELI metal backing of the polyethylene tibial component. The components were analyzed using scanning electron microscopy. Porous coated and uncoated tibial trays were found to have failed by fatigue. Implants with porous coatings showed significant loss of the bead coating and subsequent migration of the beads to the articulating surface between the polyethylene tibial component and the femoral component, resulting in significant third-body wear and degradation of the polyethylene. The sintered porous coating exhibited multiple regions where fatigue fracture of the neck region occurred, as well as indications that the sintering process did not fully incorporate the beads onto the substrate. Better process control during sintering and use of subsequent heat treatments to ensure a bimodal microstructure were recommended.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001026
EISBN: 978-1-62708-214-3
... transition section having a T-shaped cross section, and terminating in a pad that is bolted to the flap structure. The fracture broke transversely through the T-shaped cross section, so that the fracture surface was in the shape of a T ( Fig. 2 ). Because the part had previously been cut down and cleaned for...
Abstract
Cracks were discovered in the cast 17-4 PH stainless steel outboard leading edge flap support of an aircraft wing during overhaul inspection. Failure analysis focused on an apparently intergranular area of fracture surface. It was determined that the original mode of crack growth was cleavage, probably caused by cast-in hydrogen. The intergranular appearance resulted from heat treatment of the already cracked part, which caused the formation of grain-boundary “growth figures” on the exposed crack surfaces. It was recommended that the castings be more closely inspected for defects before further processing and that foundry practices be reviewed to correct deficiencies leading to excessive hydrogen absorption during melting and casting.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001549
EISBN: 978-1-62708-224-2
... possibility of developing fatigue cracks in many of their structural components is always present. It is thus very important that cranes and associated equipment be inspected regularly — at least visually and preferably by nondestructive test methods — for the presence of cracks. Further, it often appears...
Abstract
Crane collapse due to bolt fatigue and fatigue failure of a crane support column, crane tower, overhead yard crane, hoist rope, and overhead crane drive shaft are described. The first four examples relate to the structural integrity of cranes. However, equipment such as drive and hoist-train components are often subject to severe fatigue loading and are perhaps even more prone to fatigue failure. In all instances, the presence of fatigue cracks at least contributed to the failure. In most instances, fatigue was the sole cause. Further, in each case, with regular inspection, fatigue cracks probably would have been detected well before final failure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001829
EISBN: 978-1-62708-241-9
... Abstract An investigation was conducted to better understand the time-dependent degradation of thermal barrier coated superalloy components in gas turbines. First-stage vanes are normally subjected to the highest gas velocities and temperatures during operation, and were thus the focus of the...
Abstract
An investigation was conducted to better understand the time-dependent degradation of thermal barrier coated superalloy components in gas turbines. First-stage vanes are normally subjected to the highest gas velocities and temperatures during operation, and were thus the focus of the study. The samples that were analyzed had been operating at 1350 °C in a gas turbine at a combined-cycle generating plant. They were regenerated once, then used for different lengths of time. The investigation included chemical analysis, scanning electron microscopy, SEM/energy dispersive spectroscopy, and x-ray diffraction. It was shown that degradation is driven by chemical and mechanical differences, oxide growth, depletion, and recrystallization, the combined effect of which results in exfoliation, spallation, and mechanical thinning.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048747
EISBN: 978-1-62708-229-7
.... Abnormally high structural stresses and alternating stresses resulting from the pump vibrations contributed to the failure. The joint design was changed to incorporate a large-radius corner ( Fig. 1b ), and fitting of the components was improved to permit full weld penetration. Backing strips were used to...
Abstract
A 455 mm diam x 8 mm thick wall carbon steel (ASTM A 53) discharge line for a circulating-water system at a cooling tower fractured in service; a manifold section cracked where a Y-shaped connection had been welded. Investigation (visual inspection and photographs) supported the conclusion that the pipe failed by fatigue. Cracks originated at crevices and pits in the weld area that acted as stress raisers, producing high localized stresses because of the sharp-radius corner design. Abnormally high structural stresses and alternating stresses resulting from the pump vibrations contributed to the failure. Recommendations included changing the joint design to incorporate a large-radius corner and improving fitting of the components to permit full weld penetration. Backing strips were suggested to increase weld quality, and the pipe wall thickness was increased from 8 to 9.5 mm.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001534
EISBN: 978-1-62708-220-4
... Abstract A detailed failure analysis was conducted on an ammonia refrigerant condenser tube component that failed catastrophically during its initial hours of operation. Evidence collected clearly demonstrated that the weld between a pipe and a dished end contained a sharp unfused region at its...
Abstract
A detailed failure analysis was conducted on an ammonia refrigerant condenser tube component that failed catastrophically during its initial hours of operation. Evidence collected clearly demonstrated that the weld between a pipe and a dished end contained a sharp unfused region at its root (lack of penetration). Component failure had started from this weld defect. The hydrogen absorbed during welding facilitated crack initiation from this weld defect during storage of the component after welding. Poor weld toughness at the low operating temperature facilitated crack growth during startup, culminating in catastrophic failure as soon as the crack exceeded critical length.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001312
EISBN: 978-1-62708-215-0
... Abstract A copper condenser dashpot in a refrigeration plant failed prematurely. The dashpot was a long tubular component with a cup brazed at each end. Stereomicroscopic examination of the fracture surface at low magnification revealed a typical ductile mode of failure. The failure was...
Abstract
A copper condenser dashpot in a refrigeration plant failed prematurely. The dashpot was a long tubular component with a cup brazed at each end. Stereomicroscopic examination of the fracture surface at low magnification revealed a typical ductile mode of failure. The failure was attributed to insufficient component thickness, which made the dashpot unable to withstand internal operating pressure, and to extensive annealing in the heat-affected zones of the brazed joints. It was recommended that the condenser dashpot design take into account the annealing effects of brazing. Hydrostatic testing at a pressure times greater than the maximum operating pressure prior to placing the component in service was also suggested.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0047312
EISBN: 978-1-62708-224-2
... Fig. 5(d) revealed the initial stage of decomposition to spheroidization. This suggested that the component had been subjected to a subcritical anneal treatment to promote a ferrite matrix structure. This is an acceptable procedure to achieve the 60-40-18 grade of ductile iron. The profile of the...
Abstract
A ductile iron T-hook hook was reported to have fractured in service. It was further reported that the hook had been subjected to a load that did not exceed 5900 kg (13,000 lb) at the time of fracture. No information was provided regarding the type of metal used to manufacture the hook. A failure analysis was requested to determine the cause of fracture. Two hooks were submitted for examination. Analysis (visual inspection, 2.7x light fractography, chemical analysis, 110x SEM fractography, 27x/110x/215x nital-etched micrographs) supported the conclusions that this component fractured in service as a consequence of ductile tensile overload. Evidence indicates that the fractured region was subjected to a load exceeding the capacity of the material. Because the information available from the service application indicated that the component had not been subjected to a stress that exceeded 5900 kg (13,000 lb), the observations made in this investigation suggested that either the load was underestimated or that the indicated load was applied at a more rapid rate (perhaps with a jerk), which would tend to increase the effective force of the load.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0047312
EISBN: 978-1-62708-224-2
... Fig. 5(d) revealed the initial stage of decomposition to spheroidization. This suggested that the component had been subjected to a subcritical anneal treatment to promote a ferrite matrix structure. This is an acceptable procedure to achieve the 60-40-18 grade of ductile iron. The profile of the...
Abstract
A ductile iron T-hook hook was reported to have fractured in service. It was further reported that the hook had been subjected to a load that did not exceed 5900 kg (13,000 lb) at the time of fracture. No information was provided regarding the type of metal used to manufacture the hook. A failure analysis was requested to determine the cause of fracture. Two hooks were submitted for examination. Analysis (visual inspection, 2.7x light fractography, chemical analysis, 110x SEM fractography, 27x/110x/215x nital-etched micrographs) supported the conclusions that this component fractured in service as a consequence of ductile tensile overload. Evidence indicates that the fractured region was subjected to a load exceeding the capacity of the material. Because the information available from the service application indicated that the component had not been subjected to a stress that exceeded 5900 kg (13,000 lb), the observations made in this investigation suggested that either the load was underestimated or that the indicated load was applied at a more rapid rate (perhaps with a jerk), which would tend to increase the effective force of the load.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047181
EISBN: 978-1-62708-233-4
... inspection, 50x/90x/400x SEM micrographs, and metallographic analysis) supports the conclusion that the cracking problem in these components was identified as quench cracks due to their brittle, intergranular nature and the characteristic temper oxide on the fracture surfaces. Although the steel met the...
Abstract
Hydraulic cylinder housings were being fabricated from 4140 grade seamless steel tubing. During production, magnetic-particle inspection indicated the presence of circumferential and longitudinal cracks in a large number of cylinders. Analysis (visual inspection, dye penetrant inspection, 50x/90x/400x SEM micrographs, and metallographic analysis) supports the conclusion that the cracking problem in these components was identified as quench cracks due to their brittle, intergranular nature and the characteristic temper oxide on the fracture surfaces. Although the steel met the compositional requirements of SAE 4140, the sulfur level was 0.022% and would account for the formation of the sulfide stringers observed. Apparently, the combination of the clustered, stringer-type inclusions and the quenching conditions were too severe for this component geometry. The result was a high incidence of quench cracks that rendered the parts useless. Recommendations included changing the specification, requiring the steel to have lower sulfur concentrations. Magnetic-particle cleanliness standards should be imposed that will exclude material with harmful clusters of sulfide stringers, for example, modified AMS 2301.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001296
EISBN: 978-1-62708-215-0
... Abstract A 52000 bearing steel valve guide component operating in the fuel supply system of a transport aircraft broke into two pieces after 26 h of flight. The valve guide fractured through a set of elongated holes that had been electrodischarge machined into the component. Analysis indicated...
Abstract
A 52000 bearing steel valve guide component operating in the fuel supply system of a transport aircraft broke into two pieces after 26 h of flight. The valve guide fractured through a set of elongated holes that had been electrodischarge machined into the component. Analysis indicated that the part failed by low cycle fatigue. The fracture was brittle in nature and had originated at a severely eroded zone of craters in a hard, deep white layer that was the result of remelting during electrodischarge machining. It was recommended that the remaining parts be inspected using a stereoscopic microscope and/or a borescope.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001594
EISBN: 978-1-62708-229-7
... rates, which means cracks extend from a detectable size to a through-wall crack in a relatively short time. When fatigue cracks grow large enough to be visible to NDE, it is likely that the component is near the end of its useful life. TU Electric has determined that an inspection program designed to...
Abstract
Nuclear power plants typically experience two or three high-cycle fatigue failures of stainless steel socket-welded connections in small bore piping during each plant-year of operation. This paper discusses fatigue-induced failure in socket-welded joints and the strategy Texas Utilities Electric Company (TU Electric) has implemented in response to these failures. High-cycle fatigue is invisible to proven commercial nondestructive evaluation (NDE) methods during crack initiation and the initial phases of crack growth. Under a constant applied stress, cracks grow at accelerating rates, which means cracks extend from a detectable size to a through-wall crack in a relatively short time. When fatigue cracks grow large enough to be visible to NDE, it is likely that the component is near the end of its useful life. TU Electric has determined that an inspection program designed to detect a crack prior to the component leaking would involve frequent inspections at a given location and that the cost of the inspection program would far exceed the benefits of avoiding a leak. Instead, TU Electric locates these cracks by visually monitoring for leaks. Field experience with fatigue-induced cracks in socket-welded joints has confirmed that visual monitoring does detect cracks in a timely manner, that these cracks do not result in catastrophic failures, and that the plant can be safely shut down in spite of a leaking socket-welded joint in a small bore pipe. Historical data from TU Electric and Southwest Research Institute are presented regarding the frequency of failures, failure locations, and the potential causes. The topics addressed include 1) metallurgical and fractographic features of fatigue cracks at the weld toe and weld root; 2) factors that are associated with fatigue, such as mechanical vibration, internal pulsation, joint design, and welding workmanship; and 3) implications of a leaking crack on plant safety. TU Electric has implemented the use of modified welding techniques for the fabrication of socket-welded joints that are expected to improve their ability to tolerate fatigue.