Skip Nav Destination
Close Modal
Search Results for
Stress corrosion cracking
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 752
Search Results for Stress corrosion cracking
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001824
EISBN: 978-1-62708-241-9
... to be the primary failure mechanism in the areas of the bolts directly exposed to the working environment. Corrosion damage on surfaces facing away from the work environment was caused primarily by chloride stress-corrosion cracking, aided by loose fitting threads. Thread gaps constitute a crevice where...
Abstract
Nineteen out of 26 bolts in a multistage water pump corroded and cracked after a short time in a severe working environment containing saline water, CO 2 , and H 2 S. The failed bolts and intact nuts were to be made from a special type of stainless steel as per ASTM A 193 B8S and A 194. However, the investigation (which included visual, macroscopic, metallographic, SEM, and chemical analysis) showed that austenitic stainless steel and a nickel-base alloy were used instead. The unspecified materials are more prone to corrosion, particularly galvanic corrosion, which proved to be the primary failure mechanism in the areas of the bolts directly exposed to the working environment. Corrosion damage on surfaces facing away from the work environment was caused primarily by chloride stress-corrosion cracking, aided by loose fitting threads. Thread gaps constitute a crevice where an aggressive chemistry is allowed to develop and attack local surfaces.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001651
EISBN: 978-1-62708-229-7
... at the inside surfaces of the tubes. Transgranular stress-corrosion cracking, probably the result of sulphates under basic conditions, and dezincification occurred also as the result of galvanic corrosion under the deposits in the tubes. Recommendations were to use a closed-loop water system to eliminate...
Abstract
Some of the admiralty brass tubes were failing in a heat exchanger. The heat exchanger cooled air by passing river water through the inside of the tubes. The wall thickness of all tubes ranged between 1.19 to 1.27 mm (0.047 to 0.050 in.). General intergranular corrosion occurred at the inside surfaces of the tubes. Transgranular stress-corrosion cracking, probably the result of sulphates under basic conditions, and dezincification occurred also as the result of galvanic corrosion under the deposits in the tubes. Recommendations were to use a closed-loop water system to eliminate sulphates, ammonia, etc., and to run trials on one unit with tubes of other alloys such as 80-20 Cu-Ni or 70-30 Cu-Ni to evaluate their performance prior to any large scale retubing operations.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001652
EISBN: 978-1-62708-220-4
.... This was characteristic of corrosion fatigue. The second type of cracking originated at some of the major cracks. These cracks were branched and transgranular, which is characteristic of stress-corrosion caused by chlorides. The third crack mode, an intergranular network, was most probably the result of hydrogen sulphide...
Abstract
Three separate corrosion mechanisms were involved in the failure of an AISI type 304 stainless steel pipe elbow. The major cracks, including the one that penetrated the wall, tend to be wide-mouthed, tapering to a blunt tip, with corrosion products filling much of the crack space. This was characteristic of corrosion fatigue. The second type of cracking originated at some of the major cracks. These cracks were branched and transgranular, which is characteristic of stress-corrosion caused by chlorides. The third crack mode, an intergranular network, was most probably the result of hydrogen sulphide attack. The 13-year service life of the elbow made it difficult, if not impossible, to determine the order of the corrosion mechanisms or the length of time it took to reach the present state of degradation after the initiation of corrosion. Based on the long service life the present material has given, it was recommended that it be used again.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001820
EISBN: 978-1-62708-241-9
... of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress-corrosion...
Abstract
A group of control valves that regulate production in a field of sour gas wellheads performed satisfactorily for three years before pits and cracks were detected during an inspection. One of the valves was examined using chemical and microstructural analysis to determine the cause of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress-corrosion cracking. Based on test data and cost, A217-WC9 cast Cr–Mo steel would be a better alloy for the application.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... Abstract Stress-corrosion cracking (SCC) is a form of corrosion and produces wastage in that the stress-corrosion cracks penetrate the cross-sectional thickness of a component over time and deteriorate its mechanical strength. Although there are factors common among the different forms...
Abstract
Stress-corrosion cracking (SCC) is a form of corrosion and produces wastage in that the stress-corrosion cracks penetrate the cross-sectional thickness of a component over time and deteriorate its mechanical strength. Although there are factors common among the different forms of environmentally induced cracking, this article deals only with SCC of metallic components. It begins by presenting terminology and background of SCC. Then, the general characteristics of SCC and the development of conditions for SCC as well as the stages of SCC are covered. The article provides a brief overview of proposed SCC propagation mechanisms. It discusses the processes involved in diagnosing SCC and the prevention and mitigation of SCC. Several engineering alloys are discussed with respect to their susceptibility to SCC. This includes a description of some of the environmental and metallurgical conditions commonly associated with the development of SCC, although not all, and numerous case studies.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001815
EISBN: 978-1-62708-241-9
... revealed that the observed fractures were mixed brittle intergranular with ductile microvoid dimples. An extensive analysis of failed samples combined with a process of elimination indicated that the fractures were due to stress-corrosion cracking caused by an unidentified chemical species within...
Abstract
Copper electrical feedthrough pins used in a bolting application in a refrigeration compressor had functioned without failure for years of production and thousands of units. When some of the pins began to fail, an investigation was conducted to determine the cause. Visual examination revealed that the observed fractures were mixed brittle intergranular with ductile microvoid dimples. An extensive analysis of failed samples combined with a process of elimination indicated that the fractures were due to stress-corrosion cracking caused by an unidentified chemical species within the sealed compressor chamber. A unique combination of applied stress, residual stress, stress riser, and grain size helped isolate the failure mechanism to a single production lot of material.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001774
EISBN: 978-1-62708-241-9
... steel; the flange from type 321, and the ring gasket from 347. Examination revealed that the failure occurred by transgranular stress-corrosion cracking, initiated by the presence of polythionic acid. Detailed metallurgical investigation was subsequently conducted to identify what may have caused...
Abstract
A ring-type joint in a reactor pipeline for a hydrocracker unit had failed. Cracks were observed on the flange and the associated ring gasket during an inspection following a periodic shutdown of the unit. The components were manufactured from stabilized grades of austenitic stainless steel; the flange from type 321, and the ring gasket from 347. Examination revealed that the failure occurred by transgranular stress-corrosion cracking, initiated by the presence of polythionic acid. Detailed metallurgical investigation was subsequently conducted to identify what may have caused the formation of polythionic acid in the process gas.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001775
EISBN: 978-1-62708-241-9
... dispersive x-ray analysis (EDXA) indicated significant segregation of sulfur and chlorine along the grain boundaries. Failure was attributed to hypochlorous-acid (HClO)-induced stress-corrosion cracking (SCC). The HClO was formed by the reaction of HCl with atmospheric O 2 that entered the tube during...
Abstract
A bent Ni-Cu Monel 400 alloy tube, which operated as part of a pipeline in a petrochemical distillery, failed by through-thickness cracking. The pipeline was used to carry a stream of gaseous hydrocarbons containing hydrochloric acid (HCl) into a reaction tower. The tower provided a caustic solution (NaOH) to remove HCl from the stream, before the latter was directed to a burner. Metallographic examination showed that the cracks were intergranular and were frequently branched. Although nominal chemical composition of the component was found within the specified range, energy dispersive x-ray analysis (EDXA) indicated significant segregation of sulfur and chlorine along the grain boundaries. Failure was attributed to hypochlorous-acid (HClO)-induced stress-corrosion cracking (SCC). The HClO was formed by the reaction of HCl with atmospheric O 2 that entered the tube during shutdowns and startups. Residual stresses, originating from in situ bend forming of the tube during assembly of the line, provided a driving force for crack growth, and the segregation of sulfur on grain boundaries made the material more susceptible to cracking.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048719
EISBN: 978-1-62708-228-0
... UNS S30400 Transgranular fracture Stress-corrosion cracking A tubular heat exchanger in a refinery reformer unit was found to be leaking after 1 month of service. The exchanger contained 167 type 304 stainless steel U-bent integral-finned tubes, 19 mm ( 3 4 in.) in outside diameter...
Abstract
A tubular heat exchanger in a refinery reformer unit leaked after one month of service. The exchanger contained 167 type 304 stainless steel U-bent integral-finned tubes. Cracks in the tube wall were revealed during examination. Hardness of the tube was found to be 30 HRC at the inside surface and up to 40 HRC at the base of the fin midway between the roots which indicated that the fins were cold formed and not subsequently annealed thus susceptible to SCC because of a high residual stress level. It was revealed by metallographic examination that the fracture was predominantly by transgranular branched cracking and had originated from the inside surface. It was concluded that the tubes failed in SCC caused by chlorides in the presence of high residual stresses. The finned tubes were ordered in the annealed condition as a corrective measure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0006898
EISBN: 978-1-62708-233-4
.... In addition, stressed fuses made of nickel silver and of cupro-nickel (80Cu-20Ni) were exposed to a drop of corrosive solution in the stressed area. All nickel silver specimens failed after two days of exposure to NH4NO3 solution. However, 17% of them failed and 67% showed crack initiation but no failure...
Abstract
Several fuses made of nickel silver (57 to 61% Cu, 11 to 13% Ni, bal Zn) exposed to air containing ammonium and nitrate ions failed by SCC. Test solutions of 1 N ammonium nitrate (NH4NO3) and a 1:1 mixture of 1 N sodium nitrate (NaNO3) and 1 N calcium nitrate (Ca(NO3) 2) were prepared. In addition, stressed fuses made of nickel silver and of cupro-nickel (80Cu-20Ni) were exposed to a drop of corrosive solution in the stressed area. All nickel silver specimens failed after two days of exposure to NH4NO3 solution. However, 17% of them failed and 67% showed crack initiation but no failure after 42 days of exposure to NaNO3 + Ca(NO3)2 solution. None of the cupro-nickel specimens failed, but among those exposed to NH4NO3, 17% displayed crack initiation and 83% showed partial dealloying after 42 days. Based on the test results, the fuse material was changed from nickel silver to cupro-nickel, solving the SCC problem.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0091538
EISBN: 978-1-62708-233-4
... C64700. Marine environments Materials selection Retainers C65500 UNS C65500 Stress-corrosion cracking Electrical contact-finger retainers blanked and formed from annealed copper alloy C65500 (high-silicon bronze A) failed prematurely by cracking while in service in switchgear aboard...
Abstract
Electrical contact-finger retainers blanked and formed from annealed copper alloy C65500 (high-silicon bronze A) failed prematurely by cracking while in service in switchgear aboard seagoing vessels. In this service they were sheltered from the weather but subject to indirect exposure to the sea air. About 50% of the contact-finger retainers failed after five to eight months of service aboard ship. Investigation (visual inspection, 250x images etched with equal parts NH4OH and H2O2, emission spectrographic analysis, and stereoscopic views) supported the conclusion that the cracking was produced by stress corrosion as the combined result of: residual forming and service stresses; the concentration of tensile stress at outer square corners of the pierced slots; and preferential corrosive attack along the grain boundaries as a result of high humidity and occasional condensation of moisture containing a fairly high concentration of chlorides (seawater typically contains about 19,000 ppm of dissolved chlorides) and traces of ammonia. Recommendations included redesign of the slots, shot-blasting the formed retainers, and changing the material to a different type of silicon bronze-copper alloy C64700.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001423
EISBN: 978-1-62708-233-4
... austenitic stainless steels. Examination of the cracks at high magnification revealed them to be of the stress-corrosion type. The welds were of satisfactory quality. Cracking was also visible at these locations, this again being of the stress corrosion type. The method of cylinder construction introduced...
Abstract
Five cylinders out of a group of nine in a drying machine developed leaks after a few months service in a textile mill. Leakage was reported from locations between the hoop and body and from the circumferential welds. The materials in the affected area were 18/8 Ti and 18/10/3/Mo austenitic stainless steels. Examination of the cracks at high magnification revealed them to be of the stress-corrosion type. The welds were of satisfactory quality. Cracking was also visible at these locations, this again being of the stress corrosion type. The method of cylinder construction introduced a crevice between the outer hoop and the cylinder at the inboard edge so that during washing of the rolls, water could penetrate the crevice and subsequent heating would lead to the concentration of chlorides within the crevice. Redesign of the cylinder to eliminate the crevice was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091669
EISBN: 978-1-62708-227-3
... of only aluminum alloys 6061-T6 and T651 and 2024-T6, T62, and T851. Fittings Fuel lines Marine environments Missiles 2017 UNS A92017 2014 UNS A92014 Stress-corrosion cracking During a routine inspection, cracks were discovered in several aluminum alloy coupling nuts ( Fig. 1a...
Abstract
During a routine inspection, cracks were discovered in several aluminum alloy (similar to either 2014 or 2017) coupling nuts on the fuel lines of a missile. The fuel lines had been exposed to a marine atmosphere for six months while the missile stood on an outdoor test stand near the seacoast. A complete check was then made, both visually and with the aid of a low-power magnifying glass, of all coupling nuts of this type on the missile. Investigation (visual inspection, spectrographic and chemical analysis, and metallographic examination) supported the conclusion that the cracking of the aluminum alloy coupling nuts was caused by stress corrosion. Contributing factors included use of a material that is susceptible to this type of failure, sustained tensile stressing in the presence of a marine (chloride-bearing) atmosphere, and an elongated grain structure transverse to the direction of stress. The elongated grain structure transverse to the direction of stress was a consequence of following the generally used procedure of machining this type of nut from bar stock. Recommendations included changing the materials specification for new coupling nuts for this application to permit use of only aluminum alloys 6061-T6 and T651 and 2024-T6, T62, and T851.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006387
EISBN: 978-1-62708-217-4
.... Accessories Aircraft components Scanning electron microscopy Swivels 7075 UNS A97075 Intergranular corrosion Stress-corrosion cracking A routine examination on a seat ejection system found that the catapult attachment swivel contained cracks on opposite sides of the part. This swivel, or bath tub...
Abstract
A routine examination on a seat ejection system found that the catapult attachment swivel fabricated from 7075-T651 aluminum alloy plate contained cracks on opposite sides of the part. This swivel, or bath tub, does not experience extreme loads prior to activation of the catapult system. Some loads could be absorbed however, when the aircraft is subjected to G loads. Visual examination of the part revealed that cracks through the wall thickness initiated on the inner walls of the fixture. Scanning electron microscopy (SEM) and electron optical examination revealed that the cracking pattern initiated and progressed by an intergranular failure mechanism. It was concluded that failure of the catapult attachment swivel fixture occurred by SCC. It was recommended that the 7075 aluminum ejection seat fixture be supplied in the T-73 temper to minimize susceptibility to SCC.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001560
EISBN: 978-1-62708-217-4
... Abstract Military aircraft use a cartridge ignition system for emergency engine starts. Analysis of premature failures of steel (AISI 4340) breech chambers in which the solid propellant cartridges were burned identified corrosion as one problem with an indication that stress-corrosion cracking...
Abstract
Military aircraft use a cartridge ignition system for emergency engine starts. Analysis of premature failures of steel (AISI 4340) breech chambers in which the solid propellant cartridges were burned identified corrosion as one problem with an indication that stress-corrosion cracking may have occurred. A study was made for stress-corrosion cracking susceptibility of 4340 steel in a paste made of the residues collected from used breech chambers. The constant extension rate test (CERT) technique was employed and SCC susceptibility was demonstrated. The residues, which contained both combustion products from the cartridges and corrosion products from the chamber, were analyzed using elemental analysis and x-ray diffraction techniques. Electrochemical polarization techniques were also utilized to estimate corrosion rates.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091674
EISBN: 978-1-62708-217-4
... that the interference fit of the bushing in the lug hole be discontinued. Aircraft components Hinge brackets Marine environments 2014-T6 UNS A92014 Stress-corrosion cracking Surface treatment related failures Forged aluminum alloy 2014-T6 hinge brackets in naval aircraft rudder and aileron linkages...
Abstract
Forged aluminum alloy 2014-T6 hinge brackets in naval aircraft rudder and aileron linkages were found cracked in service. The cracks were in the hinge lugs, adjacent to a bushing made of cadmium-plated 4130 steel. Investigation (visual inspection and 250X micrographs) supported the conclusion that the failure of the hinge brackets occurred by SCC. The corrosion was caused by exposure to a marine environment in the absence of paint in stressed areas due to chipping. The stress resulted from the interference fit of the bushing in the lug hole. Recommendations included inspecting all hinge brackets in service for cracks and for proper maintenance of paint. Also suggested was replacing the aluminum alloy 2015-T6 with alloy 7075-T6, and surface treatment for the 7075-T6 brackets was recommended using sulfuric acid anodizing and dichromate sealing. Finally, it was also recommended that the interference fit of the bushing in the lug hole be discontinued.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048616
EISBN: 978-1-62708-217-4
... Intergranular precipitation Shot peening 431 UNS S43100 Stress-corrosion cracking The T-bolt shown in Fig. 1(a) was part of the coupling for a bleed air duct of a jet engine on a transport plane. Specifications required that the 4.8-mm ( 3 16 -in.) diam T-bolt be made of AISI type 431...
Abstract
A T-bolt was part of the coupling for a bleed air duct of a jet engine on a transport plane. Specifications required that the 4.8 mm diam component be made of AISI type 431 stainless steel and heat treated to 44 HRC. The operating temperature of the duct is 425 to 540 deg C (800 to 1000 deg F), but that of the bolt is lower. The T-bolt broke after three years of service. The expected service life was equal to that of the aircraft. It was found that the bolt broke as a result of SCC. Thermal stresses were induced into the bolt by intermittent operation of the jet engine. Mechanical stresses were induced by tightening of the clamp around the duct, which in effect acted to straighten the bolt. The action of these stresses on the carbides that precipitated in the grain boundaries resulted in fracture of the bolt. Due to the operating temperatures of the duct near the bolt, the material was changed to A-286, which is less susceptible to carbide precipitation. The bolt is strengthened by shot peening and rolling the threads after heat treatment. Avoiding temperatures in the sensitizing range is desirable, but difficult to ensure because of the application.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091678
EISBN: 978-1-62708-217-4
... components Forgings Lugs Marine environments 2014-T6 UNS A92014 Intergranular corrosion Pitting corrosion Stress-corrosion cracking During a routine shear-pin check, the end lug on the barrel of the forward canopy actuator on a naval aircraft was found to have fractured. The lug was forged from...
Abstract
During a routine shear-pin check, the end lug on the barrel of the forward canopy actuator on a naval aircraft was found to have fractured. The lug was forged from aluminum alloy 2014-T6. Investigation (visual inspection, 2x views, and 140X micrographs etched with Keller's reagent) supported the conclusion that the cause of failure was SCC resulting from exposure to a marine environment. The fracture occurred in normal operation at a point where damage from pitting and intergranular corrosion acted as a stress raiser, not because of overload. The pitting and intergranular attack on the lug were evidence that the surface protection of the part had been inadequate as manufactured or had been damaged in service and not properly repaired in routine maintenance. Recommendations included anodizing the lug and barrel in sulfuric acid and giving them a dichromate sealing treatment, followed by application of a coat of paint primer. During routine maintenance checks, a careful examination was suggested to look for damage to the protective coating, and any necessary repairs should be made by cleaning, priming, and painting. Severely corroded parts should be removed from service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006409
EISBN: 978-1-62708-217-4
... if pipe threads were to be used. A determination of proper torque values for tightening the connectors was suggested also. Aircraft components Scanning electron microscopy Stresses Tapping (threads) Wall thickness 2024 UNS A92024 Intergranular fracture Stress-corrosion cracking...
Abstract
Pitostatic system connectors were being found cracked on several aircraft. Two of the cracked connectors made of 2024-T351 aluminum alloy were submitted for failure analysis. The connectors had cut pipelike threads that were sealed with Teflon-type tape when installed. Longitudinal cracks were located near the opening of the female ends of each connector. A cross section showed intergranular cracking with multiple branching in one connector. Scanning electron microscopy (SEM) showed intergranular cracking and separation of elongated grains. A cross section of connector threads showed an incomplete thread form resulting from improper tapping. It was concluded that the pitostatic system connectors failed by SCC. The stress was caused by forcing the improperly threaded female nut over its fully threaded male counterpart to effect a seal. The one connector tested for chemical composition was not made of 2024 aluminum alloy as reported but of 2017 aluminum. It was recommended that the pitostatic system connector manufacturing process be revised to produce full-depth threads rather than pseudo pipe threads. Wall thickness should be increased to increase the hoop stress bearing area if pipe threads were to be used. A determination of proper torque values for tightening the connectors was suggested also.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001609
EISBN: 978-1-62708-229-7
... was the most likely cause of failure. 439 Intergranular stress corrosion Postweld heat treatment Sensitization 430 UNS S43000 Intergranular fracture Stress-corrosion cracking Heat-Recovery Steam Generator Design A heat-recovery steam generator (HRSG) generates steam from the heat...
Abstract
Alloy 430 stainless steel tube-to-header welds failed in a heat recovery steam generator (HRSG) within one year of commissioning. The HRSG was in a combined cycle, gas-fired, combustion turbine electric power plant. Alloy 430, a 17% Cr ferritic stainless steel, was selected because of its resistance to chloride and sulfuric acid dewpoint corrosion under conditions potentially present in the HRSG low-pressure feedwater economizer. Intergranular corrosion and cracking were found in the weld metal and heat-affected zones. The hardness in these regions was up to 35 HRC, and the weld had received a postweld heat treatment (PWHT). Metallographic examination revealed that the corroded areas contained undertempered martensite. Fully tempered weld areas with a hardness of 93 HRB were not attacked. No evidence of corrosion fatigue was found. Uneven temperature control during PWHT was the most likely cause of failure.
1