Skip Nav Destination
Close Modal
Search Results for
Stream turbines
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 28 Search Results for
Stream turbines
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001004
EISBN: 978-1-62708-229-7
... sampling method, represents an attractive approach to the toughness assessment of critical power plant components. Grain boundaries Phosphorus Segregation Stream turbines Studs Temper embrittlement 1CrMoV Creep fracture/stress rupture Introduction During a routine maintenance overhaul...
Abstract
The results of a failure analysis of a series of Cr-Mo-V steel turbine studs which had experienced a service lifetime of some 50,000 h are described. It was observed that certain studs suffered complete fracture while others showed significant defects located at the first stress bearing thread. Crack extension was the result of marked creep embrittlement and reverse temper embrittlement (RTE). Selected approaches were examined to assess the effects of RTE on the material toughness of selected studs. It was observed that Auger electron microscopy results which indicated the extent of grain boundary phosphorus segregation exhibited a good relationship with ambient temperature Charpy data. The electrochemical polarization kinetic reactivation, EPR, approach, however, proved disappointing in that the overlapping scatter in the minimum current density, Ir, for an embrittled and a non-embrittled material was such that no clear decision of the toughness properties was possible by this approach. The initial results obtained from small punch testing showed good agreement with other reported data and could be related to the FATT. Indeed, this small punch test, combined with a miniature sample sampling method, represents an attractive approach to the toughness assessment of critical power plant components.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001281
EISBN: 978-1-62708-215-0
...), a nonlayer-type corrosion (type I) occurs. Metallography revealed a layer-type corrosion and uneven scale/metal interfaces on the nozzles, corresponding to type II hot corrosion. Cooling holes provide film cooling that allows the nozzle material to withstand gas stream temperatures. Cooling hole blockage...
Abstract
The first-stage nozzles of a high-pressure turbine section of an industrial gas turbine exhibited leading and trailing-edge deterioration. The nozzles were made of X-40, a cobalt-base alloy, and were aluminide coated. Failure analysis determined that the deterioration was the result of hot corrosion caused by a combination of contaminants, cooling-hole blockage, and coating loss.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046422
EISBN: 978-1-62708-234-1
...) or by the discontinuity of the water-discharge slot. It could also be argued that the acceleration forced on the water in the rotor, which makes the flow hug one side of each rotor pocket, causes a rotating discontinuous pattern of streams to emerge from the rotor, which then produces discrete liquid impacts...
Abstract
Stator vanes (cast from a Cu-Mn-Al alloy) in a hydraulic dynamometer used in a steam-turbine test facility were severely eroded. The dynamometer was designed to absorb up to 51 MW (69,000 hp) at 3670 rpm, and constituted an extrapolation of previous design practices and experience. Its stator was subject to severe erosion after relatively short operating times and initially required replacement after each test program. Although up to 60 cu cm (3.7 cu in.) of material was being lost from each vane, it only reduced the power-absorption capacity by a small amount. Analysis supported the conclusion that the damage was due to liquid erosion, but it could not be firmly established whether it was caused by cavitation or by liquid impact. Recommendations included making a material substitution (to Mo-13Cr-4Ni stainless steel) and doing a redesign to reduce susceptibility to erosion as well as erosion-producing conditions.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
... in the compressor, which initially manifests as surface roughening, especially at the leading edges. More aggressive erosion results in a recession of the leading and trailing edges of the airfoil, most severely near the outer diameter of the flow path due to centrifuging of particulate in the gas stream ( Fig. 15...
Abstract
This article focuses on common failures of the components associated with the flow path of industrial gas turbines. Examples of steam turbine blade failures are also discussed, because these components share some similarities with gas turbine blading. Some of the analytical methods used in the laboratory portion of the failure investigation are mentioned in the failure examples. The topics covered are creep, localized overheating, thermal-mechanical fatigue, high-cycle fatigue, fretting wear, erosive wear, high-temperature oxidation, hot corrosion, liquid metal embrittlement, and manufacturing and repair deficiencies.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
... of partial blockage of a tube. The impinging stream can rapidly perforate tube walls, especially if silt or mud have an additional erosive effect. Steam erosion is another form of impingement corrosion. It occurs when high-velocity wet steam contacts a metal surface. The resulting attack usually produces...
Abstract
Erosion occurs as the result of a number of different mechanisms, depending on the composition, size, and shape of the eroding particles; their velocity and angle of impact; and the composition of the surface being eroded. This article describes the erosion of ductile and brittle materials with the aid of models and equations. It presents three examples of erosive wear failures, namely, abrasive erosion, erosion-corrosion, and cavitation erosion.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
... visible on the pump impeller. Impingement corrosion attack can also occur as the result of partial blockage of a tube. The impinging stream can rapidly perforate tube walls, especially if silt or mud has an additional erosive effect. Steam erosion is another form of impingement corrosion. It occurs when...
Abstract
Erosion is the progressive loss of original material from a solid surface due to mechanical interaction between that surface and a fluid, a multicomponent fluid, an impinging liquid, or impinging solid particles. The detrimental effects of erosion have caused problems in a number of industries. This article describes the processes involved in erosion of ductile materials, brittle materials, and elastomers. Some examples of erosive wear failures are given on abrasive erosion, liquid impingement erosion, cavitation, and erosion-corrosion. In addition, the article provides information on the selection of materials for applications in which erosive wear failures can occur.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006796
EISBN: 978-1-62708-295-2
....2017.12.003 46. Varavka V.N. and Kudryakov O.V. , Regularities of Steel Wear under the Impact of Discrete Water-Droplet Stream, Part I: Initial Stage of Droplet Impingement Erosion , J. Friction Wear , Vol 36 , 2015 , p 71 – 79 10.3103/S1068366615010146 47. Varavka V.N...
Abstract
Erosion of a solid surface can be brought about by liquid droplet impingement (LDI), which is defined as "progressive loss of original material from a solid surface due to continued exposure to erosion by liquid droplets." In this article, the emphasis is placed on the damage mechanism of LDI erosion under the influence of a liquid film and surface roughness and on the prediction of LDI erosion. The fundamentals of LDI and processes involved in initiation of erosion are also discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... produced in an oxidizing environment is less corrosive than carbon monoxide (CO), which is the prevalent carbonaceous gaseous species in a reducing environment. Under simultaneous oxidizing and carburizing conditions, where hydrocarbons are present in the gas stream and/or with the introduction of oily...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... is the prevalent carbonaceous gaseous species in a reducing environment. Under simultaneous oxidizing and carburizing conditions, where hydrocarbons are present in the gas stream and/or with the introduction of oily components, stainless steels and nickel-base alloys are susceptible to severe carburization called...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001779
EISBN: 978-1-62708-241-9
... in the reduction of a pump’s life and efficiency, vibration in framework, and extra noises [ 1 – 5 ]. Other common problems are erosion and corrosion. Solid particles in the liquid could also limit the life of internal pump components [ 4 ]. The particles carried in the fluid stream can strike the internal...
Abstract
Material samples collected from failed booster pumps were analyzed to determine the cause of failure and assess the adequacy of the materials used in the design. The pumps had been in service at a power plant, transporting feedwater from a deaerator to a main turbine boiler. Samples from critical areas of the pump were examined using optical and scanning electron microscopy, electrochemical analysis, and tensile testing. Based on microstructure and morphology, estimated corrosion rates, and particle concentrations in the feedwater, it was concluded that cavitation and erosion were the dominant failure mechanisms and that the materials and processes used to make the pumps were largely unsuited for the application.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... for steam turbine rotors/discs, carbon and alloy steel components in boilers Residential and industrial water-delivery systems: Stainless steel PEX clamps (described earlier) and brass components General Characteristics of Stress-Corrosion Cracking The phenomenological characteristics of SCC...
Abstract
Stress-corrosion cracking (SCC) is a form of corrosion and produces wastage in that the stress-corrosion cracks penetrate the cross-sectional thickness of a component over time and deteriorate its mechanical strength. Although there are factors common among the different forms of environmentally induced cracking, this article deals only with SCC of metallic components. It begins by presenting terminology and background of SCC. Then, the general characteristics of SCC and the development of conditions for SCC as well as the stages of SCC are covered. The article provides a brief overview of proposed SCC propagation mechanisms. It discusses the processes involved in diagnosing SCC and the prevention and mitigation of SCC. Several engineering alloys are discussed with respect to their susceptibility to SCC. This includes a description of some of the environmental and metallurgical conditions commonly associated with the development of SCC, although not all, and numerous case studies.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
Abstract
This article commences with a discussion on the characteristics of stress-corrosion cracking (SCC) and describes crack initiation and propagation during SCC. It reviews the various mechanisms of SCC and addresses electrochemical and stress-sorption theories. The article explains the SCC, which occurs due to welding, metalworking process, and stress concentration, including options for investigation and corrective measures. It describes the sources of stresses in service and the effect of composition and metal structure on the susceptibility of SCC. The article provides information on specific ions and substances, service environments, and preservice environments responsible for SCC. It details the analysis of SCC failures, which include on-site examination, sampling, observation of fracture surface characteristics, macroscopic examination, microscopic examination, chemical analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
... processes of gas turbines, diesel engines, or other industrial processes is effectively used to produce hot water or steam to improve the process economy. The kraft-recovery boilers (also known as black-liquor-recovery boilers) produce steam that can be used in the kraft process to generate electricity...
Abstract
Failures in boilers and other equipment taking place in power plants that use steam as the working fluid are discussed in this article. The discussion is mainly concerned with failures in Rankine cycle systems that use fossil fuels as the primary heat source. The general procedure and techniques followed in failure investigation of boilers and related equipment are discussed. The article is framed with an objective to provide systematic information on various damage mechanisms leading to the failure of boiler tubes, headers, and drums, supplemented by representative case studies for a greater understanding of the respective damage mechanism.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
Abstract
This article explains the main types and characteristic causes of failures in boilers and other equipment in stationary and marine power plants that use steam as the working fluid with examples. It focuses on the distinctive features of each type that enable the failure analyst to determine the cause and suggest corrective action. The causes of failures include tube rupture, corrosion or scaling, fatigue, erosion, and stress-corrosion cracking. The article also describes the procedures for conducting a failure analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
...) will be recalled. Although Si 3 N 4 exhibits high corrosion resistance in the stream of combustion products of pure fuel (10 −5 % Na and V, 0.5%) below 1400 °C (2550 °F), it corrodes rapidly at 900 °C (1650 °F) when fuel contains 0.005% Na, 0.005% V, and 3% S. In liquid media, Si 3 N 4 resists attack by acids up...
Abstract
This article provides a discussion on the structural ceramics used in gas turbine components, the automotive and aerospace industries, or as heat exchangers in various segments of the chemical and power generation industries. It covers the fundamental aspects of chemical corrosion and describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
... combustion gases, steam, or water to gases, vapors, or liquids of various types. Heat exchangers are of tube, plate, or sheet construction. Tubular heat exchangers are generally used for large fluid systems, whereas heat exchangers of plate or sheet construction are often preferred for smaller fluid streams...
Abstract
This article describes the characteristics of tubing of heat exchangers with respect to general corrosion, stress-corrosion cracking, selective leaching, and oxygen-cell attack, with examples. It illustrates the examination of failed parts of heat exchangers by using sample selection, visual examination, microscopic examination, chemical analysis, and mechanical tests. The article explains corrosion fatigue of tubing of heat exchangers caused by aggressive environment and cyclic stress. It also discusses the effects of design, welding practices, and elevated temperatures on the failures of heat exchangers.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006813
EISBN: 978-1-62708-329-4
... exchangers are used to transfer heat from/to combustion gases and steam or water to/from gases, vapors, or liquids of various types where, for example, the effluent is used to heat the incoming stream or external water cools the reactant steam. A great variety of heat-exchanger designs have been used...
Abstract
Heat exchangers are devices used to transfer thermal energy between two or more fluids, between a solid surface and a fluid, or between a solid particulate and a fluid at different temperatures. This article first addresses the causes of failures in heat exchangers. It then provides a description of heat-transfer surface area, discussing the design of the tubular heat exchanger. Next, the article discusses the processes involved in the examination of failed parts. Finally, it describes the most important types of corrosion, including uniform, galvanic, pitting, stress, and erosion corrosion.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... showing dendritic pattern Hot tearing C 222 (a) Rupture after complete solidification, either during cooling or heat treatment Quench cracking C 300 Discontinuities caused by lack of fusion (cold shuts); edges generally rounded, indicating poor contact between various metal streams...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... Quench cracking C 300: Discontinuities caused by lack of fusion (cold shuts); edges generally rounded, indicating poor contact between various metal streams during filling of the mold C 310: Lack of complete fusion in the last portion of the casting to fill C 311 (a) Complete...
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
... a 254-Mg (280-ton) ammonia converter. Fig. 2(a) Ruptured 305-mm (12-in.) carbon steel pipe, inadvertently installed in a 1.25Cr-0.5Mo circuit, that was severely damaged by hydrogen embrittlement. On-stream failure caused extensive fire damage. Fig. 2(b) Micrograph of outside-diameter...
Abstract
This article discusses the effect of using unsuitable alloys, metallurgical discontinuities, fabrication practices, and stress raisers on the failure of a pressure vessel. It provides information on pressure vessels made of composite materials and their welding practices. The article explains the failure of pressure vessels with emphasis on stress-corrosion cracking, hydrogen embrittlement, brittle and ductile fractures, creep and stress rupture, and fatigue with examples.
1