1-20 of 63

Search Results for Storage tanks, design

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001350
EISBN: 978-1-62708-215-0
... in service due to vibration of the nozzles during filling and draining of the tank. Breeder reactors Crack propagation Fast nuclear reactors Storage tanks, design 316L UNS S31603 Fatigue fracture Background Upon arrival at the erection site, an AISI type 316L stainless steel tank...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001512
EISBN: 978-1-62708-228-0
..., misunderstanding of brittle fracture led to the wrong design and construction of an LPG storage tank. The best design specification is to use a correlation between LAST, the Lowest Anticipated Service Temperature, and the DBTT measured by either Charpy tests or DTT. Crude oil Design Fillet welds Standards...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001639
EISBN: 978-1-62708-229-7
... Abstract This paper describes the remote ultrasonic (UT) examinations of a high-level radioactive waste storage tank at the Savannah River Site in South Carolina. The inspections, carried out by E.R. Holland, R.W. Vande Kamp, and J.B. Elder, were performed from the contaminated, annular space...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001832
EISBN: 978-1-62708-241-9
... Abstract High-level radioactive wastes generated during the processing of nuclear materials are kept in large underground storage tanks made of low-carbon steel. The wastes consist primarily of concentrated solutions of sodium nitrate and sodium hydroxide. Each of the tanks is equipped...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001272
EISBN: 978-1-62708-215-0
... radius panels were forced to fit the base ring of the larger 22 m (72 ft) design. This would introduce tensile bending stresses on the inside of the tank wall, and these stresses would add to the hoop stress acting in the same direction created by the material in the tank. Applications The failed...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091208
EISBN: 978-1-62708-220-4
... Abstract A failure of an aboveground storage tank occurred due to external corrosion of the tank floor. The liquid asphalt tank operated at elevated temperatures (approximately 177 deg C, or 350 deg F) and had been in service for six years. Cathodic protection (rectifiers) had been installed...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001349
EISBN: 978-1-62708-215-0
... during hydrotesting. Circumstances Leading to Failure The heavy water/helium storage tank was designed for a pressure of 0.1 MPa (14.5 psi) and a temperature of 67 °C (150 °F) to contain helium gas at a maximum pressure of 0.035 MPa (5 psi) and a temperature of 40 °C (105 °F), as well...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047508
EISBN: 978-1-62708-221-1
... Abstract A riveted 0.25% carbon steel oil-storage tank in Oklahoma was dismantled and reassembled in Minnesota by welding to form a storage tank for soybean oil. An opening was cut in the side of the tank to admit a front-end loader. A frame of heavy angle iron was welded to the tank...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001347
EISBN: 978-1-62708-215-0
... at a storage facility in which butadiene is transferred from large storage tanks to railroad tank cars, a routine process for the approximately 45454-kg (100,000-lb) railroad cars with approximately a 126800 1 (33,500 gal) capacity (127 m 3 , or 4,480 ft 3 ). The butadiene is maintained in the tanks at about...
Image
Published: 15 January 2021
Fig. 19 Schematic of nominal design of concentrating solar power system using molten salts. Solar energy is concentrated in towers, where molten salts are heated and pumped to a storage tank where they can power an electric-power-generating system (EPGS) in which thermal energy is converted More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001765
EISBN: 978-1-62708-241-9
... Abstract This paper describes the investigation of a corrosion failure of bottom plates on an aboveground tank used for the storage of potable water. The tank was internally inspected for the first time after six years of service. Paint blisters and rust spots were observed on the bottom plates...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001386
EISBN: 978-1-62708-215-0
... Abstract Two type 420 martensitic stainless steel load cell bodies, which had been installed under two of the four legs of a milk storage tank failed in service. The failure occurred near a change in section and involved fracture of the entire cross section. Examination showed a brittle...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006809
EISBN: 978-1-62708-329-4
... pressure vessels, piping, and storage tanks. The level 1 and level 2 assessment methods are almost identical to the ASME VIII-1 design philosophy. The level 3 method (which references part 9 of API 579) includes a detailed fracture mechanics evaluation. API 579 Part 3, Level 1 Fitness-for-Service...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
.... Replacement of the pipe was recommended. Several alloys, nonmetallic materials, and lined materials were proposed for coupon testing to determine which is the best in this particular environment. Example 2: Analysis of a Corrosion Failure of an Aboveground Storage Tank A failure of an aboveground...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001064
EISBN: 978-1-62708-214-3
... corrosion in the process liquors. It was built by a European company according to a well-established design. Fig. 1 View of new stainless steel chemical plant. The pipework, tanks and reservoirs were hydrotested using local mountain borehole water, which was stored in an open pond prior to use...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001140
EISBN: 978-1-62708-227-3
... alloys for storage of compressed breathing gasses, increases constantly. The design of most of these cylinders is based on classical “strength of materials” considerations i.e. employing thin wall cylinder equations and requiring that the proof hoop stress (1.5× service hoop stress) in the thinnest...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006823
EISBN: 978-1-62708-329-4
... monitoring for continued operation of equipment such as pressurized vessels, piping systems, and storage tanks. Fitness-for-service assessments can be conducted at three levels (1, 2, and 3), with each level requiring increasing amounts of data and inspection of the equipment and level of expertise...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... compartments rupture. Improvement in steel grades Safety procedures established for lifeboats Warning systems established for icebergs Molasses tank failures ( Ref 5 ) 1919, 1973 Brittle fracture of the tank as a result of poor ductility and higher loads Design codes for storage tanks developed...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... codes for storage tanks developed Consideration given to causes for brittle fracture Tacoma Bridge Failure ( Ref 6 , 7 1940 Aerodynamic instability and failure caused by wind vortices and bridge design Sophisticated analytical models developed for resonance Bridge design changed to account...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
... identification on the engineering drawing is a function of the complexity of the component. Newly created drawings are typically electronic computer-aided design constructs. These drawings require less storage space but can be as prone to human errors as the time-honored autographic drafting methods. Many...