1-20 of 240 Search Results for

Steel wire

Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0047694
EISBN: 978-1-62708-219-8
... Abstract Extra high strength zinc-coated 1080 steel welded wire was wound into seven-wire cable strands for use in aerial cables and guy wires. The wires and cable strands failed tensile, elongation, and wrap tests, with wires fracturing near welds at 2.5 to 3.5% elongation and through...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001258
EISBN: 978-1-62708-235-8
... Abstract A drawing plant which processed steel wire of designation 105 Cr 2 for ball bearings had losses due to crack formation and wire breakage during drawing. To establish the reason for the breakage, seven fractures were submitted for investigation with contiguous wire segments on both...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0090932
EISBN: 978-1-62708-235-8
... Abstract Cold-drawn type 303 stainless steel wire sections, 6.4 mm (0.25 in.) in diameter, failed during a forming operation. All of the wires failed at a gradual 90 deg bend. Investigation (visual inspection and 5.3x/71x/1187x SEM views) supported the conclusion that the wires cracked due...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001285
EISBN: 978-1-62708-215-0
... Abstract A 6 x 19 fiber core steel wire rope failed as it was being used to lower a steel television tower. Fracture of the rope occurred at a point under one of two clips used to fashion a spliced loop that was directly connected to the top of the tower. Microscopic examination of the fracture...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048035
EISBN: 978-1-62708-224-2
... Abstract A 3.8-cm diam 6 x 37 rope of improved plow steel wire failed in service during dumping of a ladle of hot slag. A heavy blue oxide extending 0.6 to 0.9 m back from each side of the break was revealed on examination of the rope. Tensile fractures were shown by the broken ends of the rope...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048043
EISBN: 978-1-62708-224-2
... Abstract An AISI type 303(Se) stainless steel eye terminal that was roll swaged on the end of a 9.5 mm diam wire rope cracked extensively after one year of service. A hairline crack that had initiated at the inner surface of the fitting was revealed by metallographic examination of a sectioned...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048020
EISBN: 978-1-62708-224-2
... Abstract A 13 mm diam 18 x 7 fiber-core improved plow steel nonrotating wire rope, brought into service as a replacement for 6 x 37 improved plow steel ropes, failed after 14 months of service on a stacker crane. The change was reported to have been caused by difficulties twisting of the 6 x 37...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048026
EISBN: 978-1-62708-224-2
... Abstract The 11 mm diam 8 x 19 fiber-core rope, constructed from improved plow steel wire, on the cleaning-line crane failed while lifting a normal load of coils after five weeks of service. Several broken wires and fraying of the fiber core were revealed by visual examination of a section...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001186
EISBN: 978-1-62708-234-1
... Abstract A 2.3 mm diam steel wire broke during cable twisting. The fracture occurred obliquely to the longitudinal axis of the wire and showed a constriction at the end. Therefore it was a ductile fracture. File mark type work defects were noticeable on the wire surface at both sides...
Image
Published: 30 August 2021
Fig. 1 End of a steel wire-rope wire that failed in tension because of overloading. Necking at the end of the wire indicates ductile fracture. More
Image
Published: 01 January 2002
Fig. 6 Valve springs made from patented and drawn high-carbon steel wire. Distorted outer spring (left) exhibited about 25% set because of proeutectoid ferrite in the microstructure and high operating temperature. Outer spring (right) is satisfactory. More
Image
Published: 01 January 2002
Fig. 1 End of a steel wire rope that failed in tension because of overloading. Necking at the ends of the wires indicates ductile fracture; no worn or abraded areas were found at the break. More
Image
Published: 01 January 2002
Fig. 2 Components of a steel wire rope. Source: Ref 3 More
Image
Published: 01 January 2002
Fig. 5 Steel wire rope with heavy corrosion and broken individual wires resulting from intermittent underwater service. More
Image
Published: 01 January 2002
Fig. 6 Steel wire rope, used on a cleaning-line crane, that failed from fatigue resulting from vibration caused by shock loading. (a) Section of the wire rope adjacent to the fracture. Approximately 1 1 2 ×. (b) Unetched longitudinal section of a wire from the rope showing fatigue More
Image
Published: 01 January 2002
Fig. 7 Transverse section through 2.6-mm (0.102-in.) diam steel wire. Light-etching surface layer (top) is untempered martensite; adjacent dark-etching zone is self-tempered martensite. The matrix was composed of deformed pearlite. Etched with 5% nital. 265× More
Image
Published: 01 January 2002
Fig. 29 Failure caused by improper quenching. (a) AISI W1 tool steel wire-forming die that broke prematurely during service. (b) Cold etching (10% aqueous nitric acid) of a disk cut behind the fracture revealed that the bore-working surface was not hardened; only the dull gray region More
Image
Published: 01 January 2002
Fig. 3 Forming cracks on stainless steel wire ( example 2 ). (a) The fracture, which occurred during bending shows many parallel fissures. 5.3×. (b) A typical fissure on the wire surface. Scanning electron micrograph. 71×. (c) The interior of the fissures and the fracture surface exhibit More
Image
Published: 01 January 2002
Fig. 21 Scanning electron micrograph of the surface of a stainless steel wire, showing corrosion pits. Source: Ref 23 More
Image
Published: 01 January 2002
Fig. 57 Upset butt welded steel wire showing typical acceptable burrs on the welds. Dimensions given in inches More