1-20 of 374 Search Results for

Steel pipe

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001043
EISBN: 978-1-62708-214-3
... Abstract A 76 mm (3 in.) type 304 stainless steel tube that was used as a heat shield and water nozzle support in a hydrogen gas plant quench pot failed in a brittle manner. Visual examination of a sample from the failed tube showed that one lip of the section was eroded from service failure...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001060
EISBN: 978-1-62708-214-3
... Abstract A type 316 stainless steel pipe reducer section failed in service of bleached pulp stock transfer within 2 years in a pulp and paper mill. The reducer section fractured in the heat-affected zone of the flange-to-pipe weld on the flange side. The pipe reducer section consisted of 250...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001061
EISBN: 978-1-62708-214-3
... Abstract Schedule 80 low-carbon steel pipes used to transfer kraft liquor in a Kamyr continuous pulp digester failed within 18 months after installation. Visual and metallographic examinations established that the cracking initiated on the internal surfaces of the equalizer pipes in the welds...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001066
EISBN: 978-1-62708-214-3
... Abstract A flanged 100 mm (4 in.) diam low-carbon steel spool piece lined with Teflon was removed from a sulfuric acid denitrification system after cracks were observed in the painted coating. Visual and microstructural examination along with SEM fractography revealed scaled iron oxides on all...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001336
EISBN: 978-1-62708-215-0
... Abstract Catastrophic pitting corrosion occurred in type 304L stainless steel pipe flange assemblies in an industrial food processor. During regular service the pumped medium was pureed vegetables. In situ maintenance procedures included cleaning of the assemblies with a sodium hypochlorite...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048747
EISBN: 978-1-62708-229-7
... for a circulating-water system at a cooling tower fractured in service; a manifold section cracked where a Y-shaped connection had been welded. The steel pipe was made to ASTM A 53 specifications. Fig. 1 Carbon steel discharge line at a cooling tower that failed because of poor fit-up at Y-joint and poor...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091528
EISBN: 978-1-62708-229-7
... Abstract A 150 mm (6 in.) schedule 80S type 304 stainless steel pipe (11 mm, or 0.432 in., wall thickness), which had served as an equalizer line in the primary loop of a pressurized-water reactor, was found to contain several circumferential cracks 50 to 100 mm (2 to 4 in.) long. Two...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001699
EISBN: 978-1-62708-234-1
... a recirculating capacity of about 44,000 gal (166,000 L) of water. It consisted primarily of steel pipes fitted with threaded connectors on the 2 in. (46 cm) pipes and bolted flanged couplings on the larger pipes. Seven years following the completion of the mall, corrosion problems were noted at the outer...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001343
EISBN: 978-1-62708-215-0
... Abstract A section of type 304 stainless steel pipe from a stand by system used for emergency injection of cooling water to a nuclear reactor failed during precommissioning. Leaking occurred in only one spot. Liquid penetrant testing revealed a narrow circumferential crack. Metallographic...
Image
Published: 01 January 2002
Fig. 2(a) Ruptured 305-mm (12-in.) carbon steel pipe, inadvertently installed in a 1.25Cr-0.5Mo circuit, that was severely damaged by hydrogen embrittlement. On-stream failure caused extensive fire damage. More
Image
Published: 01 January 2002
Fig. 2 Pitting corrosion of 316L stainless steel pipe. (a) View of pitting on the outside-diameter surface at the leak location. (b) View of the inside-diameter surface, where the pit size was larger at the leak location. There was a rusty discoloration along the bottom of the pipe. (c) Cross More
Image
Published: 01 January 2002
Fig. 46 Photograph of the inside of a stainless steel pipe with corrosion pits. The pipe was from a fire-sprinkler system for a car and passenger ferry boat. More
Image
Published: 01 January 2002
Fig. 9 Section of ASTM A 106 carbon steel pipe with wall severely damaged by hydrogen attack. The pipe failed after 15 months of service in hydrogen-rich gas at 34.5 MPa (5000 psig) and 320 °C (610 °F). (a) Overall view of failed pipe section. (b) Microstructure of hydrogen-attacked pipe near More
Image
Published: 01 January 2002
Fig. 16 Stress-corrosion cracks in steel pipe weld. (a) Magnetic particle enhancement of cracks in the weld of an equalizer line elbow section. Cracks were localized in the weld and HAZs. (b) Cracks initiated on the inside surface and propagated through the weld in a multiple branching mode. More
Image
Published: 01 January 2002
Fig. 19 Pitting and perforation on the outside of a carbon steel pipe More
Image
Published: 01 January 2002
Fig. 23 Bell-and-spigot joint used in an aqueduct of steel pipe. (a) The original design cracked because of poor welding technique and poor choice of metal. (b) Improved design showing modification of weld beads. Dimensions given in inches More
Image
Published: 01 June 2019
Fig. 3 Photograph showing a steel pipe with tuberculation (bottom) and corroded ID wall as observed following sandblasting (top). More
Image
Published: 30 August 2021
Fig. 4 (a) Ruptured 305 mm (12 in.) carbon steel pipe, inadvertently installed in a 1.25Cr-0.5Mo circuit, that was severely damaged by hydrogen embrittlement. On-stream failure caused extensive fire damage. (b) Outside-diameter surface of the failed pipe. Hydrogen attack had progressed through More
Image
Published: 30 August 2021
Fig. 10 Type 304 stainless steel pipe microstructures in cross-section showing (a) intergranular attack on the surface, and (b) the pipe microstructure after a sensitization screening etch. Original magnification: 500×. Electrolytically etched with 10% oxalic acid solution More
Image
Published: 30 August 2021
Fig. 30 Bell-and-spigot joint used in an aqueduct of steel pipe. (a) The original design cracked because of poor welding technique and poor choice of metal. (b) Improved design showing modification of weld beads. Dimensions given in inches More