Skip Nav Destination
Close Modal
Search Results for
Steel making
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 350 Search Results for
Steel making
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001645
EISBN: 978-1-62708-232-7
... Abstract An extensive metallurgical investigation was carried out on samples of a failed roller bearing from the support and tilting system of a basic oxygen furnace converter used in the steel melting shop of an integrated steel plant. The converter bearing was fabricated from low-carbon...
Abstract
An extensive metallurgical investigation was carried out on samples of a failed roller bearing from the support and tilting system of a basic oxygen furnace converter used in the steel melting shop of an integrated steel plant. The converter bearing was fabricated from low-carbon, carburizing grade steel and had failed in service within a year of fitting to a repaired shaft. Microscopic observations of both the broken roller and inner-race samples revealed subsurface cracking and preponderance of brittle oxide and other macroinclusions. Electron probe microanalysis studies confirmed that the brittle oxides that formed stringers were alumina, and the other macroinclusions were complex silicates. Both the alumina and silicate inclusions were deleterious to contact-fatigue properties. Microstructurally, the carburized regions of the broken roller and of inner-race samples contained high-carbon tempered martensite. Microhardness measurements revealed that. Although the core hardness of the roller and the inner-race samples were similar, the surface hardness of the roller was approximately 8.5 HRC units harder than that of the inner-race. SEM observations of the roller fracture surface revealed striations indicative of fatigue, and EDS analyses corroborated a high incidence of silicate inclusions at crack sites. The study suggests that the failure of the bearing occurred because the hardness difference between the roller bearing and the inner-race surfaces resulted in wear of the inner-race. The wear led to shaft misalignment and play during service. The misalignment, coupled with the presence of inclusions, caused fatigue failure of the roller bearing.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001256
EISBN: 978-1-62708-218-1
... of foreign bodies, resulting from steel making/deoxidizing/teeming stages. The occasionally globular nature of the foreign particles suggested these were formed at the liquid condition of the steel. The ratio of Mn-Si as seen on electron probe microanalysis also suggested the globules high in Mn content...
Abstract
There was a large incidence of surface defects on the crank pins and journals and other areas of crank shafts of a high power automotive engine. The steel used was a Cr-Mo type of nitriding steel. Metallographic observations conclusively proved that the defective areas were entrapment of foreign bodies, resulting from steel making/deoxidizing/teeming stages. The occasionally globular nature of the foreign particles suggested these were formed at the liquid condition of the steel. The ratio of Mn-Si as seen on electron probe microanalysis also suggested the globules high in Mn content might have resulted in deoxidizing stage. Particularly the absence of Fe in some areas in the inclusion was indicative of precipitation deoxidation by ferromanganese/ferrosilicon. The defects apparently did not have time to coalesce and rise up to the top.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001326
EISBN: 978-1-62708-215-0
... of the CaO was determined to be slag entrapment during the steel making process. It was recommended that the thermowell blanks be ultrasonically tested prior to machining and that the design be modified to make internal pressurization possible. Leakage Nonmetallic inclusions Nuclear reactor...
Abstract
Pressure testing of a batch of AISI type 316L stainless steel thermowells intended for use in a nuclear power-plant resulted in the identification of leakage at the tips in 20% of the parts. Radiography at the tip region of representative thermowells showed linear indications along the axes. SEM examination revealed the presence of longitudinally oriented nonmetallic inclusions that were partly retained and partly dislodged. Electron-dispersive x-ray analysis indicated that the inclusions were composed of CaO. Based on the overall chemistry of the inclusion sites, the source of the CaO was determined to be slag entrapment during the steel making process. It was recommended that the thermowell blanks be ultrasonically tested prior to machining and that the design be modified to make internal pressurization possible.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001184
EISBN: 978-1-62708-235-8
... making 18-8 Fe-1.0C-1.5Cr (Other, general, or unspecified) processing-related failures Occasionally metallic inclusions are found in ingots, semi-finished or finished products which top crusts resemble 1 , 2 , 3 . While these can be differentiated from the steel in the primary structure...
Abstract
Examples of metallic inclusions in steels of various types are presented. The structure of an inclusion in an annealed Fe-1C-1.5Cr steel consisted of ferrite with lamellar pearlite. The carbon content of the inclusion was therefore considerably lower than that of the chromium steel and was adapted to the latter by diffusion only at the periphery of the inclusion. In another section of a hardened piece of the same chromium steel, the steel in this case had a structure of martensite with hypereutectic carbide, while the inclusions consisted of a very fine laminated eutectoid of the lower pearlite range (Troostite). In a pipe of 18-8 austenitic stainless steel a weakly magnetizable spot of limited size was found. This inclusion too was probably more alloy-deficient than the austenitic steel, similar to the ones described above. All three cases were casting defects.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0065825
EISBN: 978-1-62708-228-0
... propagation were needed be controlled. It was concluded that improved steel processing procedures, chiefly hot-working temperature and deformation control, were also required to optimize microstructure and properties. Chemical composition Ductile brittle transition Gas pipelines Steel making API 5L...
Abstract
A case of continual product refinement stimulated by product failures was described. Brittle fracture of gas transmission line pipe steels occurred demonstrating a poor combination of materials, environment, manufacturing and installation problems, and loads. Initial efforts were concentrated towards decreasing the Charpy ductile-to-brittle transition temperature to avoid brittle fracture. It was subsequently revealed that the absorbed energy on the upper shelf of the Charpy energy-temperature curve was critical for arresting a moving crack. Both fracture initiation and fracture propagation were needed be controlled. It was concluded that improved steel processing procedures, chiefly hot-working temperature and deformation control, were also required to optimize microstructure and properties.
Image
in Analysis of Hot Rolled Steel Transit Damage
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 20 Contamination by Fertilizer: This shipment of hot rolled pipe exhibited unusual corrosion upon discharge. Inquiries revealed there were fertilizer (ammonium chloride) and steelmaking additions stored above the pipe in the hold. The porous, granular steel-making addition stuck
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001839
EISBN: 978-1-62708-241-9
... of microcracks did not reveal any tangible presence of non-metallic inclusions and indigenous/exogenous entrapments from steel making, which could be held responsible for the culmination of defect. Although, the defective steel was in general found to exhibit a ditched microstructure (i.e., grains completely...
Abstract
Several stainless steel coils cracked during a routine unwinding procedure, prompting an investigation to determine the cause. The analysis included optical and scanning electron microscopy, energy-dispersive x-ray spectrometry, and tensile testing. An examination of the fracture surfaces revealed a brittle intercrystalline mode of fracture with typical manifestations of clear grain facets. Branched and discrete stepwise microcracks were also found along with unusually high levels of residual hydrogen. Mechanical tests revealed a marked loss of tensile ductility in the defective steel with elongations barely approaching 8%, compared to 50% at the time of delivery weeks earlier. Based on the timing interval and the fact that failure occurred at operating stresses well below the yield point of the material, the failure is being attributed to hydrogen-induced damage. Potential sources of hydrogen are considered as are remedial measures for controlling hydrogen content in steels.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001591
EISBN: 978-1-62708-227-3
... Passenger ships Ship plate Steel making Carbon steel Mixed-mode fracture One evening in early 1907, Lord William James Pirrie, managing director and controlling chairman, Harland and Wolff, Shipbuilders, Belfast, Northern Ireland, entertained at dinner J. Bruce Ismay, chairman, Oceanic Steam...
Abstract
On 14 April 1912, at 11:40 p.m., Greenland Time, the Royal Mail Ship Titanic on its maiden voyage was proceeding westward at 21.5 knots (40 km/h) when the lookouts on the foremast sighted a massive iceberg estimated to have weighed between 150,000 to 300,000 tons at a distance of 500 m ahead. Immediately, the ship’s engines were reversed and the ship was turned to port (left) in an attempt to avoid the iceberg. In about 40 sec, the ship struck the iceberg below the waterline on its starboard (right) side near the bow. The iceberg raked the hull of the ship for 100 m, destroying the integrity of the six forward watertight compartments. Within 2 h 40 min the RMS Titanic sank. Metallurgical examination and chemical analysis of the steel taken from the Titanic revealed important clues that allow an understanding of the severity of the damage inflicted on the hull. Although the steel was probably as good as was available at the time the ship was constructed, it was very inferior when compared with modern steel. The notch toughness showed a very low value (4 J) for the steel at the water temperature (-2 deg C) in the North Atlantic at the time of the accident.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001746
EISBN: 978-1-62708-217-4
... of the sustained stresses over long periods of aircraft rest. Other possible sources of hydrogen were the electric furnace steel making process, the acid pickling operation, or inadequate process during the iron phosphate treatment. The assigned main cause was inadequate maintenance; there was also a possible...
Abstract
Brittle intergranular fracture, typical of a hydrogen-induced delayed failure, caused the failure of an AISI 4340 Cr-Mo-Ni landing gear beam. Corrosion resulting from protective coating damage released nascent hydrogen, which diffused into the steel under the influence of sustained tensile stresses. A second factor was a cluster of non-metallic inclusions which had ‘tributary’ cracks starting from them. Also, eyebolts broke when used to lift a light aircraft (about 7000 lb.). The bolt failure was a brittle intergranular fracture, very likely due to a hydrogen-induced delayed failure mechanism. As for the factors involved, cadmium plating, acid pickling, and steelmaking processes introduce hydrogen on part surfaces. As a second contributing factor, both bolts were 10 Rc points higher in hardness than specified (25 Rc), lessening ductility and notch toughness. A third factor was inadequate procedure, which resulted in bending moments being applied to the bolt threads.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001118
EISBN: 978-1-62708-214-3
... are typical of slag/oxide inclusions from the steel making process. Small amounts of these types of inclusions can have a deleterious effect on the wire drawing operation by becoming trapped in or by scoring the final drawing die, thus causing the poor surface quality observed. Fig. 11 EDX microprobe...
Abstract
Failure of AISI type 321 stainless steel internal springs from newly manufactured lip seals on a shaft between a turbine power unit and a pump in a commercial aircraft secondary unit was investigated. Examination of the coils from two failed springs showed that both had failed by fatigue. The springs contained drawing defects that served as the fatigue crack initiation sites. It was recommended that the wire drawing process be investigated for various levels of steel cleanliness to predict the incidence of drawing defects at the wire surface. Stress analysis to determine the minimum tolerable defect size was also recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0092135
EISBN: 978-1-62708-222-8
... the conclusion that the iron shot increased stresses in the choke zone of the barrel, causing it to deform. Variations in the amount of bulging were attributed to a lack of uniformity in wall thickness. Recommendations included making the barrel from steel with a higher yield strength, making the barrel walls...
Abstract
A shotgun barrel fabricated from 1138 steel deformed when test firing alternative nontoxic ammunition. The test shells contained soft iron shot, which at 72 HB, is much harder than traditional lead shot (typically 30 to 40 HB). An investigation based on ID and OD profiling supported the conclusion that the iron shot increased stresses in the choke zone of the barrel, causing it to deform. Variations in the amount of bulging were attributed to a lack of uniformity in wall thickness. Recommendations included making the barrel from steel with a higher yield strength, making the barrel walls thicker and more uniform, and/or developing an alternative nontoxic metal shot with a hardness in the range of 30 to 40 HB.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001654
EISBN: 978-1-62708-220-4
... that a molybdenum-bearing stainless steel such as 316L or 317L be used instead of 321. Heat exchanger tubes Leakage 321 UNS S32100 Pitting corrosion AISI type 321 stainless steel tubes - from both a heat exchanger, used to pre-heat make-up water, and from a blow-down unit in the same system - were...
Abstract
AISI type 321 stainless steel heat exchanger tubes failed after only three months of service. Macroscopic examination revealed that the leaks were the result of localized pitting attack originating at the water side surfaces of the tubes. Metallographic sections were prepared from both sets of tubes. Microscopic examination revealed that the pits had a small mouth with a large subsurface cavity which is typical of chloride pitting of austenitic stainless steel. However, no pitting was found in other areas of the system, where the chloride content of the process water was higher. This was attributed to the fact that they were downstream from a deaeration unit. It was concluded that the pitting was caused by a synergistic effect of chlorine and oxygen in the make-up water. Because it was not possible to install a deaeration unit upstream of the heat exchangers, it was recommended that a molybdenum-bearing stainless steel such as 316L or 317L be used instead of 321.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001768
EISBN: 978-1-62708-241-9
... carbon, high strength low alloy steel. The steel was rolled as per ASTM A568/568M standard specification. The splice plates were subsequently punched for making holes and galvanized at 450 °C before putting into use in transmission towers. The chemical composition of the plate material was as per...
Abstract
A steel splice plate in a power transmission line tower cracked while in service. Metallographic analysis indicated the presence of a white hard martensite layer near the crack, which occurred in the heel of the plate. Mechanical property tests revealed localized hardening in the area of the crack, supporting the metallurgical findings. A substantial deterioration of the Charpy impact toughness of the material in the heel region was also observed which is believed to have caused the initiation and propagation of the cracks leading to the failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001597
EISBN: 978-1-62708-236-5
... Abstract This case study involves two continuously cast steel crankshaft failures. Three parties performed their own failure analyses: (1) the engine manufacturer responsible for component design, specification, and application; (2) the steel supplier and forging supplier responsible for making...
Abstract
This case study involves two continuously cast steel crankshaft failures. Three parties performed their own failure analyses: (1) the engine manufacturer responsible for component design, specification, and application; (2) the steel supplier and forging supplier responsible for making the steel, forging the shape, and preliminary heat treatment; and (3) a supplier that provided induction hardening, finish machining, and inspection. An independent engineering firm was subsequently involved, but because each party had its own agenda, there was no agreement on the metallurgical source of the failure and thus no continued analysis to pin down and eliminate the root cause.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001206
EISBN: 978-1-62708-235-8
... seam. The cracks only appeared where the originally deposited bead was remelted in the regions of overlap. Given the construction and welding technique used, it would have been preferable to make the nipples of a steel lower in sulfur content. However, by taking advantage of all the potential...
Abstract
A number of seamless pipe nipples of 70 mm diam and 3.5 mm wall thickness made of steel type 35.8 were oxyacetylene welded to collectors of greater wall thickness with a round bead. X-ray examination showed crack initiation in the interior of the nipples close to the root of the weld seam. The cracks only appeared where the originally deposited bead was remelted in the regions of overlap. Given the construction and welding technique used, it would have been preferable to make the nipples of a steel lower in sulfur content. However, by taking advantage of all the potential in shaping and welding technology, it should be possible to prevent crack formation with steel type 35.8 of normal composition.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047423
EISBN: 978-1-62708-236-5
... not been used to make the weld. Repair welds in high-strength steel castings should always be made with low-hydrogen filler materials. Filler metals Heat affected zone Repair welding Fe-0.18C-1.37Ni-0.42Cr-0.31Mo Fatigue fracture Joining-related failures A large shackle used in operating...
Abstract
A large shackle used in operating a dragline bucket failed in service. The shackle was made of a cast low-alloy steel (similar to AISI 4320) heat treated to a hardness of 415 BN. The shackle failed by fracturing through the load-bearing region. Examination of the fracture surface revealed a fatigue crack through about one-third of the cross section. A secondary fatigue crack, perpendicular to the main fracture, was also observed. The composition of the weld deposit corresponded to a heat treatable flux-cored arc welding filler material that was known to have been used for repair welding of these products. This shackle failed because of fatigue initiating at hydrogen cracks that had occurred in the HAZ of a repair weld. The weld had been made with a heat-treatable filler material, and a full postweld heat treatment had been performed. However, a low-hydrogen filler material had not been used to make the weld. Repair welds in high-strength steel castings should always be made with low-hydrogen filler materials.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001260
EISBN: 978-1-62708-235-8
... Abstract One percent Cr-Mo low alloy constructional steel is widely used for high tensile applications, e.g., for manufacture of high tensile fasteners, heat treated shafts and axles, for automobile applications such as track pins for high duty tracked vehicles etc. The steel is fairly through...
Abstract
One percent Cr-Mo low alloy constructional steel is widely used for high tensile applications, e.g., for manufacture of high tensile fasteners, heat treated shafts and axles, for automobile applications such as track pins for high duty tracked vehicles etc. The steel is fairly through hardening and heat treatment does not present any serious difficulty. Care is still required in processing to avoid decarburization. In an application of track pins for tracked vehicles, bars about 22 mm diam were required in heat treated and centerless-ground condition prior to induction hardening of the surface. Indifferent results were obtained in induction hardening; cracks were noticed, and patchy hardness figures were obtained on the final product in several batches. Metallographic examination of transverse sections through the defective areas showed decarburization to varying degrees, i.e., from partial to total decarburization. Observations suggested the defects originated at the stages of ingot making and rolling. This was apparently the reason for complete decarburization of the area with original surface defect which opened up further in the oxidizing atmosphere of the furnace with low melting clinkers from scale and furnace lining filling up the crevice of the original defect.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001715
EISBN: 978-1-62708-219-8
... Abstract Microstructure, corrosion, and fracture morphologies of prestressed steel wires that failed in service on concrete siphons at the Central Arizona Project (CAP) are discussed. The CAP conveys water for municipal, industrial, and agricultural use through a system of canals, tunnels...
Abstract
Microstructure, corrosion, and fracture morphologies of prestressed steel wires that failed in service on concrete siphons at the Central Arizona Project (CAP) are discussed. The CAP conveys water for municipal, industrial, and agricultural use through a system of canals, tunnels, and siphons from Lake Havasu to just south of Tucson, AZ. Six siphons were made from prestressed concrete pipe units 6.4 m (21 ft) in diam and 7.7 m long, making them the largest circular precast structures ever built. The pipe was manufactured on site and consisted of a 495-mm thick concrete core, wrapped with ASTM A648 steel prestressing wire. All of the CAP failures evaluated were attributed to corrosion. Longitudinal splits reduced the service life of the pipe significantly by facilitating corrosion and introducing sharp cracks into the microstructure of the wire. A few failures were attributed to general corrosion, where the cross section of the wire is reduced until the strength of the wire is exceeded. Most of the failures evaluated were attributed to stress-corrosion cracking.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048397
EISBN: 978-1-62708-226-6
... by the soft austenitic 304 stainless steel used to make the screws. The corrosion products of the plate were revealed by microprobe analysis to impregnate the surrounding tissues. Improper material selection was concluded to be the reason for the general corrosion behavior. Carbides Corrosion products...
Abstract
A large portion of the four-hole Lane plate disintegrated and consisted mainly of corrosion products after remaining in the body for 26 years. Transformation structures and carbides were exhibited by the plate which was made from chromium steel. Minimal corrosion was exhibited by the soft austenitic 304 stainless steel used to make the screws. The corrosion products of the plate were revealed by microprobe analysis to impregnate the surrounding tissues. Improper material selection was concluded to be the reason for the general corrosion behavior.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047140
EISBN: 978-1-62708-234-1
... Abstract A roll assembly consisting of a forged AISI type 440A stainless steel sleeve shrink fitted over a 4340 steel shaft and further secured with tapered keys on opposite ends was crated and shipped by air. Upon arrival, the sleeve was found to have cracked longitudinally between the keyways...
Abstract
A roll assembly consisting of a forged AISI type 440A stainless steel sleeve shrink fitted over a 4340 steel shaft and further secured with tapered keys on opposite ends was crated and shipped by air. Upon arrival, the sleeve was found to have cracked longitudinally between the keyways. A roll manufacturer had successfully used the above procedure for many years to make them. Analysis (visual inspection; 150x micrograph of sections etched with a mixture of 2 parts HNO3, 2 parts acetic acid, and 3 parts HCI; electron microscopy; and stress testing) supported the conclusion that superficial working of the metal, probably insufficient hot working, produced a microstructure in which the carbide particles were not broken up and evenly distributed. As a result, the grains were totally surrounded with brittle carbide particles. This facilitated the formation of a crack at a fillet in the keyway. Crack growth was rapid once the crack had initiated, causing brittle fracture to occur.
1