Skip Nav Destination
Close Modal
Search Results for
Steel boiler tube
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 151 Search Results for
Steel boiler tube
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 20 Hydrogen damage (dark area) in a carbon steel boiler tube. The tube cross section was macroetched with hot 50% hydrochloric acid.
More
Image
Published: 01 January 2002
Fig. 18 Micrograph of an etched specimen from a carbon steel boiler tube. Decarburization and discontinuous intergranular cracking resulted from hydrogen damage. 250×
More
Image
Published: 01 January 2002
Image
in Rupture of a Carbon Steel Tube Because of Hydrogen-Induced Cracking and Decarburization
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Image
Published: 30 August 2021
Fig. 18 Metallographic mount of failed steel boiler tube sample exhibiting corrosion fatigue. Source: Ref 53
More
Image
in Failure of Boilers and Related Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 8 Microstructure of a carbon steel boiler tube subjected to prolonged overheating below Ac 1 showing (a) decomposition of pearlite into ferrite and spheroidal carbides (original magnification: 400×) and (b) spheroidization of carbide and grain-boundary voids characteristic of tertiary
More
Image
in Failure of Boilers and Related Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 12 Typical microstructures of carbon steel boiler tube that ruptured as a result of rapid overheating. (a) Elongated grains near rupture resulting from rapid overheating below the recrystallization temperature. (b) Mixed structure near rupture resulting from rapid overheating between Ac 1
More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001340
EISBN: 978-1-62708-215-0
... modifications on tube wall temperatures. Boiler tubes, mechanical properties Cracking (fracturing) High temperature Carbon steel Thermal fatigue fracture Background Two identical “D” tube package boilers experienced premature tube failures after short operating times. The tubes were joined...
Abstract
Two identical “D” tube package boilers, installed at separate plants, experienced a number of tube ruptures after relatively short operating times. The tubes, which are joined by membranes, experienced localized bulging and circumferential cracking along the fireside crown as a result of overheating and thermal fatigue. It was recommended that recent alterations to the steam-drum baffling be remodified to improve circulation in the boiler and prevent further overheating. Several thermocouples were attached to tubes in problem areas of the boiler to monitor the effects of the steam-drum modifications on tube wall temperatures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048289
EISBN: 978-1-62708-234-1
... Abstract The center portions of two adjacent low-carbon steel boiler tubes (made to ASME SA-192 specifications) ruptured during a start-up period after seven months in service. It was indicated by reports that there had been sufficient water in the boiler two hours before start-up...
Abstract
The center portions of two adjacent low-carbon steel boiler tubes (made to ASME SA-192 specifications) ruptured during a start-up period after seven months in service. It was indicated by reports that there had been sufficient water in the boiler two hours before start-up. The microstructure near the rupture edge was revealed by metallographic examination to consist of ferrite and acicular martensite or bainite. The microstructure and the observed lack of cold work indicated a temperature above the transformation temperature of 727 deg C had been reached. Swelling of the tubes was disclosed by the wall thickness and OD of the tubing. The tubes were concluded to have failed due to rapid overheating.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0048350
EISBN: 978-1-62708-227-3
... Abstract Tubes in a marine boiler on a new ship failed after brief service lives. Circumferential brittle cracking was found to occur in the carbon-molybdenum steel tubes near the points where the tubes were attached to the steam drum. Fatigue striations were revealed by examination of fracture...
Abstract
Tubes in a marine boiler on a new ship failed after brief service lives. Circumferential brittle cracking was found to occur in the carbon-molybdenum steel tubes near the points where the tubes were attached to the steam drum. Fatigue striations were revealed by examination of fracture surfaces by electron microscopy at high magnification. Fatigue failures were concluded to be caused by vibrations resulting from normal steam flow at high steam demand. Too rigid support near the steam drum resulted in concentration of vibratory strain in the regions of failure. The method of supporting the tubes was changed to reduce the amount of restraint and the strain concentration.
Image
Published: 01 January 2002
Fig. 9 Microstructures of specimens from carbon steel boiler tubes subjected to prolonged overheating below Ac 1 . (a) Voids (black) in grain boundaries and spheroidization (light, globular), both of which are characteristic of tertiary creep. 250×. (b) Intergranular separation adjacent
More
Image
Published: 01 January 2002
Fig. 10 Typical microstructures of 0.18% C steel boiler tubes that ruptured as a result of rapid overheating. (a) Elongated grains near tensile rupture resulting from rapid overheating below the recrystallization temperature. (b) Mixed structure near rupture resulting from rapid overheating
More
Image
Published: 01 January 2002
Fig. 39 Stationary boiler in which a carbon steel water-wall tube failed by fatigue fracture at the weld joining the tube to a dust bin. (a) Illustration of a portion of the boiler showing location of failure. Dimensions given in inches. (b) Photograph of fractured tube. Fatigue crack
More
Image
Published: 01 January 2002
Fig. 31 Stationary boiler in which a carbon steel water-wall tube failed by fatigue fracture at the weld joining the tube to a dust bin. (a) Illustration of a portion of the boiler showing location of failure. Dimensions given in inches. (b) Photograph of fractured tube; fatigue crack
More
Image
in Fatigue Failure of a Carbon Steel Water-Wall Tube Because of an Undercut at a Welded Joint
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 1 Stationary boiler in which a carbon steel water-wall tube failed by fatigue fracture at the weld joining the tube to a dust bin. (a) Illustration of a portion of the boiler showing location of failure. Dimensions given in inches. (b) Photograph of fractured tube. fatigue crack
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048309
EISBN: 978-1-62708-229-7
... Abstract A 75 mm OD x 7.4 mm wall thickness carbon steel boiler tube ruptured. A substantial degree of corrosion on the water-side surface leaving a rough area in the immediate vicinity of the rupture was revealed by visual examination. Decarburization and extensive discontinuous intergranular...
Abstract
A 75 mm OD x 7.4 mm wall thickness carbon steel boiler tube ruptured. A substantial degree of corrosion on the water-side surface leaving a rough area in the immediate vicinity of the rupture was revealed by visual examination. Decarburization and extensive discontinuous intergranular cracking was revealed by microscopic examination of a cross section through the tube wall at the fracture. It was concluded that the rupture occurred because of hydrogen damage involving the formation of methane by the reaction of dissolved hydrogen with carbon in the steel. Hydrogen was produced by the chemical reaction that corroded the internal tube surface. Steel embrittled by hydrogen can be restored only if grain boundary cracking or decarburization had not occurred but since the material embrittled in this manner, its replacement was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091291
EISBN: 978-1-62708-234-1
... Abstract Carbon steel tubes from a boiler feedwater heater feeding a deaerator were treated to control scale formation, but the treatment instead produced more iron oxide. The additional iron oxide reduced the tubing to a totally corroded condition. Investigation showed that the chelate...
Abstract
Carbon steel tubes from a boiler feedwater heater feeding a deaerator were treated to control scale formation, but the treatment instead produced more iron oxide. The additional iron oxide reduced the tubing to a totally corroded condition. Investigation showed that the chelate injected to control the scaling was added ahead of the preheater, where the boiler water still contained oxygen. As the chelate removed iron oxide, the O2 in the water continued to form more. Recommendations included moving the chelate addition to a point after the deaerator to stop the corrosion.
Image
Published: 01 January 2002
Fig. 11 Microstructures of three specimens taken from severely overheated carbon steel boiler tubes. The specimens were taken adjacent to a rupture in a tube (a), about 250 mm (10 in.) from the rupture in the same tube (b), and from a nearby unruptured tube (c). All three structures contain
More
Image
in Rupture of Low-Carbon Steel Boiler Tubes Because of Severe Overheating
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 1 Microstructures of three specimens taken from severely overheated carbon steel boiler tubes. The specimens were taken adjacent to a rupture in a tube (a), about 250 mm (10 in.) from the rupture in the same tube (b), and from a nearby unruptured tube (c). All three structures contain
More
Image
Published: 01 January 2002
Fig. 19 Window fracture. Typically results from hydrogen damage in carbon or low-alloy steel boiler tubes
More
1