Skip Nav Destination
Close Modal
Search Results for
Springs (elastic)
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 69 Search Results for
Springs (elastic)
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0051293
EISBN: 978-1-62708-225-9
... as to select a grade of spring steel that would be more corrosion resistant than 302 stainless. Materials selection Spring steels Springs (elastic) Water feeders 302 UNS S30200 304 UNS S30400 Corrosion fatigue After six months of operating a new chicken house, a farmer noticed...
Abstract
Majority of the water feeders in a new chicken house had stopped working. The water feeders were found to be operated on the principle that when the chickens pecked a plastic bowl, a compressed spring released a squirt of water. The small compression springs were made from type 302 stainless steel, and the operating stresses were safely within the design limits given by the Goodman diagram. The springs were revealed by scanning electron microscopy to contain numerous cracks on their inside surface, and these cracks were all at 45 deg to the wire axis. The solution was recommended as to select a grade of spring steel that would be more corrosion resistant than 302 stainless.
Image
Published: 15 May 2022
Fig. 1 Spring and dashpot models. (a) Linear elastic material with constant modulus slope, E. (b) Dashpot with linear liquid viscosity slope, η. Reprinted under the Creative Commons CC BY license from Ref 1
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0051292
EISBN: 978-1-62708-225-9
... was operating. An alternative ink that contained no free chloride ions was recommended. Chlorides Printing Springs (elastic) 302 UNS S30200 Corrosion fatigue After only two months of use in a printing operation, type 302 stainless steel springs were breaking into several pieces. The springs were...
Abstract
Type 302 stainless steel springs used in a printing operation failed by breaking into several pieces after two months in service. The springs were operating over a very small deflection and were regulating the flow of ink, in which they were constantly immersed. Fatigue fractures on every piece of the spring were revealed by visual examination. Each of the fractures was found to be oriented at 45 deg to the wire axis. Clear evidence of pitting corrosion at the fatigue fracture origin was also observed. Free chloride ions were revealed to be present in the ink in which the spring was operating. An alternative ink that contained no free chloride ions was recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0051294
EISBN: 978-1-62708-221-1
... direction. This movement into the unwind direction was concluded to be happening often enough to initiate fatigue. The stress relieving temperature was recommended to be increased to reduce the residual stresses from coiling and hence improve fatigue performance. Bending fatigue Springs (elastic...
Abstract
An agricultural tine, which is a relatively large double torsion spring with outer legs that are used to sweep through hay or other crops and turn them over, had failed. It was made hard-drawn carbon steel. Bending fatigue was revealed by visual examination to be almost certainly the cause of failure. The fatigue fracture origin was found on the inside surface of the legs at the point where they joined the coiled body of the spring. It was established that the tines after being wound up by loading with hay, sprung back through the neutral unloaded position and into the unwind direction. This movement into the unwind direction was concluded to be happening often enough to initiate fatigue. The stress relieving temperature was recommended to be increased to reduce the residual stresses from coiling and hence improve fatigue performance.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046874
EISBN: 978-1-62708-229-7
... alloy, such as Hastelloy B or C. Relief valves Springs (elastic) Torsional fatigue H21 UNS T20821 Corrosion fatigue The safety valve on a steam turbogenerator was set to open when the steam pressure reaches 2400 kPa (348 psi). The pressure had not exceeded 1790 kPa (260 psi) when...
Abstract
The safety valve on a steam turbogenerator was set to open when the steam pressure reaches 2400 kPa (348 psi). The pressure had not exceeded 1790 kPa (260 psi) when the safety-valve spring shattered into 12 pieces. The steam temperature in the line varied from about 330 to 400 deg C (625 to 750 deg F). Because the spring was enclosed and mounted above the valve, its temperature was probably slightly lower. The 195 mm (7 in.) OD x 305 mm (12 in.) long spring was made from a 35 mm (1 in.) diam rod of H21 hot-work tool steel. It had been in service for about four years and had been subjected to mildly fluctuating stresses. Analysis (visual inspection, 0.3x photographs, 0.7x light fractographs, and metallographic examination) supported the conclusions that the spring failed by corrosion fatigue that resulted from application of a fluctuating load in the presence of a moisture-laden atmosphere. Recommendations included replacing all safety valves in the system with new open-top valves that had shot-peened and galvanized steel springs. Alternatively, the valve springs could be made from a corrosion-resistant metal-for example, a 300 series austenitic stainless steel or a nickel-base alloy, such as Hastelloy B or C.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001118
EISBN: 978-1-62708-214-3
... the minimum tolerable defect size was also recommended. Aircraft components Commercial planes Lubrication systems Springs (elastic) Wire 321 UNS S32100 Metalworking-related failures Fatigue fracture Background Two stainless steel springs in oil ring lip seals failed. Applications...
Abstract
Failure of AISI type 321 stainless steel internal springs from newly manufactured lip seals on a shaft between a turbine power unit and a pump in a commercial aircraft secondary unit was investigated. Examination of the coils from two failed springs showed that both had failed by fatigue. The springs contained drawing defects that served as the fatigue crack initiation sites. It was recommended that the wire drawing process be investigated for various levels of steel cleanliness to predict the incidence of drawing defects at the wire surface. Stress analysis to determine the minimum tolerable defect size was also recommended.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001267
EISBN: 978-1-62708-215-0
... marks on the inside edge of the spring. An investigation of loads encountered in service indicated that the springs had been loaded to a large fraction of the yield strength. Redesign of the spring mechanism was recommended. Springs (elastic) Woody fracture ASTM A228 UNS K08501 Fatigue...
Abstract
Music wire springs used in a printer return mechanism failed near the bend in the hook portion of the spring during qualification testing. Samples were examined in a scanning electron microscope equipped with an energy-dispersive x-ray microprobe. Fatigue fractures originated at rub marks on the inside edge of the spring. An investigation of loads encountered in service indicated that the springs had been loaded to a large fraction of the yield strength. Redesign of the spring mechanism was recommended.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
.... The article summarizes the general process of distortion failure analysis. It also discusses three types of distortion failures that provide useful insights into the problems of analyzing unusual mechanisms of distortion. These include elastic distortion, ratcheting, and inelastic cyclic buckling...
Abstract
Distortion failure occurs when a structure or component is deformed so that it can no longer support the load it was intended to carry. Every structure has a load limit beyond which it is considered unsafe or unreliable. Estimation of load limits is an important aspect of design and is commonly computed by classical design or limit analysis. This article discusses the common aspects of failure by distortion with suitable examples. Analysis of a distortion failure often must be thorough and rigorous to determine the root cause of failure and to specify proper corrective action. The article summarizes the general process of distortion failure analysis. It also discusses three types of distortion failures that provide useful insights into the problems of analyzing unusual mechanisms of distortion. These include elastic distortion, ratcheting, and inelastic cyclic buckling.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
... can be plastic or elastic and may or may not be accompanied by fracture. There are two main types of distortion: size distortion, which refers to a change in volume (growth or shrinkage), and shape distortion (bending or warping), which refers to a change in geometric form. Most of the examples...
Abstract
Distortion often is observed in the analysis of other types of failures, and consideration of the distortion can be an important part of the analysis. This article first considers that true distortion occurs when it was unexpected and in which the distortion is associated with a functional failure. Then, a more general consideration of distortion in failure analysis is introduced. Several common aspects of failure by distortion are discussed and suitable examples of distortion failures are presented for illustration. The article provides information on methods to compute load limits, errors in the specification of the material, and faulty process and their corrective measures to meet specifications. It discusses the general process of material failure analysis and special types of distortion and deformation failure.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001268
EISBN: 978-1-62708-215-0
... treatment Table 3 Tensile properties after heat treatment Leaf spring coupon number Yield strength, 0.2% offset Ultimate tensile Elongation, % Modulus of elasticity, MPa ksi MPa ksi GPa 10 6 psi 6(b) 1055 153 1400 203 28.0 176 25.5 7(b) 1089 158 1385 207...
Abstract
A missile detached from a Navy fighter jet during a routine landing on an aircraft carrier deck because of a faulty missile launcher detent spring. Visual inspection of Inconel 718 detent spring assembly revealed that four of the nine spring leafs comprising the assembly were plastically deformed while two of the deformed leafs did not meet minimal hardness or tensile requirements. Liquid penetrant testing revealed no cracks or other surface discontinuities on the leaf springs. Material sectioned from the soft spring leafs was heat-treated according to specifications in the laboratory. The resultant increase in mechanical properties of the re-heat-treated material indicated that the original heat treatment was not performed correctly. The failure was attributed to improper heat treatment. Recommendations focused on more stringent quality control of the heat-treat operations.
Image
Published: 15 May 2022
Fig. 3 Illustration of viscoelastic behavior. Both viscous and elastic natures are observed. (a) Spring and dashpot in (a) series, Maxwell model and (b) parallel, Kelvin-Voigt model. Note that for viscoelastic materials, force depends on both deformation and rate of deformation and vice-versa.
More
Image
Published: 15 May 2022
Fig. 2 Illustration of deformation behavior. (a) Spring. (b) Rotational solid torsion bar. (c) Tensile solid specimen. Flow, Deformation, Solid behavior, Elastic nature: F = F(x); F ≠ F(v) ; F -force; x , Displacement; v, velocity; θ, torque; Θ, angular displacement
More
Image
in Effects of Composition, Processing, and Structure on Properties of Engineering Plastics
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 17 Mechanical models and typical behavior. (a) Ideal Hookean solid (σ = E ε; spring model; elastic response). (b) Ideal viscous Newtonian liquid (σ = η ε ̇ ; dashpot model). (c) Maxwell’s mechanical model for a viscoelastic material. (d) Voigt’s mechanical model for a viscoelastic
More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006941
EISBN: 978-1-62708-395-9
... component of response to both stress and strain. Therefore, when modeling viscoelasticity and particularly when limiting that response analysis in one dimension, one can define the purely elastic component to be a spring, and the viscous liquid component to be a dashpot. Figure 1 depicts...
Abstract
This article describes the viscoelastic behavior of plastics in their solid state only, from the standpoint of the material deforming without fracturing. The consequences of viscoelasticity on the mechanical properties of plastics are described, especially in terms of time-dependencies, as well as the dependence of the viscoelastic character of a plastic on chemical, physical, and compositional variables. By examining the viscoelastic behavior of plastics, the information obtained are then applied in situations in which it may be important to anticipate the long-term properties of a material. This includes assessing the extent of stress decay in materials that are pre-stressed, the noise and vibration transmission characteristics of a material, the amount of heat build-up in a material subjected to cyclic deformation, and the extent a material can recover from any prior deformation. Several qualitative graphs are presented, which highlights the possible differences in the viscoelastic behavior that can exist among plastics.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006836
EISBN: 978-1-62708-329-4
... applications by inducing a compressive residual stress on the surface. Failures of Shape Memory Alloy Springs Shape memory or nitinol (NiTi) alloys have typical mechanical elastic properties and super-elastic properties that allow unique stress-strain relationships. Springlike components manufactured...
Abstract
Mechanical springs are used in mechanical components to exert force, provide flexibility, and absorb or store energy. This article provides an overview of the operating conditions of mechanical springs. Common failure mechanisms and processes involved in the examination of spring failures are also discussed. In addition, the article discusses common causes of failures and presents examples of specific spring failures, describes fatigue failures that resulted from these types of material defects, and demonstrates how improper fabrication can result in premature fatigue failure. It also covers failures of shape memory alloy springs and failures caused by corrosion and operating conditions.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001762
EISBN: 978-1-62708-241-9
... on the tested semi-float axle The leaf springs deflect substantially during side loading. Spring deflection and axle bending constitute stored elastic energy. This energy is suddenly released at the time of fracture. The axle is restrained from being shot out of the carrier by the C clip and a rebound...
Abstract
Rollover accidents in light trucks and cars involving an axle failure frequently raise the question of whether the axle broke causing the rollover or did the axle break as a result of the rollover. Axles in these vehicles are induction hardened medium carbon steel. Bearings ride directly on the axles. This article provides a fractography/fracture mechanic approach to making the determination of when the axle failed. Full scale tests on axle assemblies and suspensions provided data for fracture toughness in the induction hardened outer case on the axle. These tests also demonstrated that roller bearing indentions on the axle journal, cross pin indentation on the end of the axle, and axle bending can be accounted for by spring energy release following axle failure. Pre-existing cracks in the induction hardened axle are small and are often difficult to see without a microscope. The pre-existing crack morphology was intergranular fracture in the axles studied. An estimate of the force required to cause the axle fracture can be made using the measured crack size, fracture toughness determined from these tests, and linear elastic fracture mechanics. The axle can be reliably said to have failed prior to rollover if the estimated force for failure is equal to or less than forces imposed on the axle during events leading to the rollover.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003528
EISBN: 978-1-62708-180-1
...-ray elastic constants of the material, variations of σ ij are the stress-tensor components, ϕ is the angle of the direction of strain measurement with respect to the frame of reference, ψ is the angle subtended by the bisector of the incident and diffracted beam, with the specimen normal, and ε ϕψ...
Abstract
This article focuses primarily on what an analyst should know about applying X-ray diffraction (XRD) residual stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly. The article describes the steps required to calibrate instrumentation and to validate stress measurement results. It presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection, as well as an outline on measurement validation. The article also provides information on stress-corrosion cracking and corrosion fatigue. The importance of residual stress in fatigue is described with examples. The article explains the effects of heat treatment and manufacturing processes on residual stress. It concludes with a section on the XRD stress measurements in multiphase materials and composites and in locations of stress concentration.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006768
EISBN: 978-1-62708-295-2
... + σ 22 + σ 33 ) + ½ S 2 ( σ 13 cos ϕ + σ 23 sin ϕ ) sin2 ψ where ½ S 2 and S 1 are the x-ray elastic constants of the material, variations of σ ij are the stress-tensor components, φ is the angle of the direction of strain...
Abstract
X-ray diffraction (XRD) residual-stress analysis is an essential tool for failure analysis. This article focuses primarily on what the analyst should know about applying XRD residual-stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly and to the subsequent evaluation of corrective actions that alter the residual-stress state of a component for the purposes of preventing, minimizing, or eradicating the contribution of residual stress to premature failures. The article presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection; measurement validation is outlined as well. A number of case studies and examples are cited. The article also briefly summarizes the theory of XRD analysis and describes advances in equipment capability.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003530
EISBN: 978-1-62708-180-1
... of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics...
Abstract
This article describes the underlying fundamentals, applications, the relevance and necessity of performing proper stress analysis in conducting a failure analysis. It presents an introduction to the stress analysis of bodies containing crack-like imperfections and the topic of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics. It also provides information on the applications of fracture mechanics in failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
... elastic fracture mechanics analysis, with some mention of elastic-plastic fracture mechanics analysis. The article describes the probabilistic aspects of fatigue and fracture. Information on crack-growth simulation of the material is also provided. crack-growth simulation elastic-plastic fracture...
Abstract
This article describes concepts and tools that can be used by the failure analyst to understand and address deformation, cracking, or fracture after a stress-related failure has occurred. Issues related to the determination and use of stress are detailed. Stress is defined, and a procedure to deal with stress by determining maximum values through stress transformation is described. The article provides the stress analysis equations of typical component geometries and discusses some of the implications of the stress analysis relative to failure in components. It focuses on linear elastic fracture mechanics analysis, with some mention of elastic-plastic fracture mechanics analysis. The article describes the probabilistic aspects of fatigue and fracture. Information on crack-growth simulation of the material is also provided.
1