Skip Nav Destination
Close Modal
Search Results for
Spring steels
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 170
Search Results for Spring steels
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0051293
EISBN: 978-1-62708-225-9
... stainless steel, and the operating stresses were safely within the design limits given by the Goodman diagram. The springs were revealed by scanning electron microscopy to contain numerous cracks on their inside surface, and these cracks were all at 45 deg to the wire axis. The solution was recommended...
Abstract
Majority of the water feeders in a new chicken house had stopped working. The water feeders were found to be operated on the principle that when the chickens pecked a plastic bowl, a compressed spring released a squirt of water. The small compression springs were made from type 302 stainless steel, and the operating stresses were safely within the design limits given by the Goodman diagram. The springs were revealed by scanning electron microscopy to contain numerous cracks on their inside surface, and these cracks were all at 45 deg to the wire axis. The solution was recommended as to select a grade of spring steel that would be more corrosion resistant than 302 stainless.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048150
EISBN: 978-1-62708-235-8
... Abstract Grease-wiper springs for cams formed from stampings of 0.25-mm thick carbon spring steel (0.65 to 0.80% C) fractured at the 0.025 mm radius on the stamped 135 deg corner at a 90 deg bend after 5,000,000 cycles. Tool marks 2 to 2.3 mm from the center of the stamped bend were disclosed...
Abstract
Grease-wiper springs for cams formed from stampings of 0.25-mm thick carbon spring steel (0.65 to 0.80% C) fractured at the 0.025 mm radius on the stamped 135 deg corner at a 90 deg bend after 5,000,000 cycles. Tool marks 2 to 2.3 mm from the center of the stamped bend were disclosed by visual examination. Fatigue striations originating from cracks at the 0.025 mm radius inside corner at the bend were revealed by SEM of the fractured surface. The maximum stress at the bend, in stock of maximum thickness and as a function of the radius of the 135 deg corner, was indicated by stress calculations to be very close to the maximum allowable fluctuating stress for the material. The wiper springs were concluded to be fractured in fatigue and the cyclic loading resulted from cam rotation. The maximum applied stress approached the allowable limit due to high stress-concentration factor in the spring (caused by the very small inside radius). The corner radius was increased to 0.76 mm and the tools were re-polished to avoid tool marks.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0090626
EISBN: 978-1-62708-218-1
... Abstract A steel spring used in an automotive application suddenly began to fail in the field, although “nothing had changed” in the fabrication process. Fatigue tests using springs fabricated prior to field failures lasted 500,000 cycles to failure, whereas fatigue tests performed on springs...
Abstract
A steel spring used in an automotive application suddenly began to fail in the field, although “nothing had changed” in the fabrication process. Fatigue tests using springs fabricated prior to field failures lasted 500,000 cycles to failure, whereas fatigue tests performed on springs fabricated after field failures lasted only 50,000 cycles to failure. It was discovered that the percent coverage of shot peening prior and subsequent to the increase in failure incidence was much less than 100%, with a shot peening time of 12 min. The residual-stress state of “as fabricated” springs in three conditions were evaluated using XRD: springs manufactured prior to failure incidence increase, 12 min peen; springs manufactured following failure incidence increase, 12 min peen; and 60 min peen. The conclusion was that the failure occurred because low peening time significantly decreased the compressive residual-stress levels in the springs. Recommendation was made to increase the time the spring was shot peened from 12 to 60 min.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001902
EISBN: 978-1-62708-217-4
... SAE 6150 spring steel, Canada's cold weather which may have had an embrittling effect on the steel, and cumulative fatigue damage from severe landing loads during service life. Replacement with heavier-duty spring legs will probably not eliminate this type of failure, but their use has reduced...
Abstract
In a spring leg of a main landing gear, large brittle fracture zones indicated a predominately cleavage pattern with some ductile dimples, and a tiny fatigue segment disclosed fine striations. Factors influencing failure were surface decarburization, notch sensitivity of the modified SAE 6150 spring steel, Canada's cold weather which may have had an embrittling effect on the steel, and cumulative fatigue damage from severe landing loads during service life. Replacement with heavier-duty spring legs will probably not eliminate this type of failure, but their use has reduced the number of failures substantially. Precautionary measures recommended to preclude accidents include removal of decarburization, proper operation of main landing gears, and adequate magnetic particle inspection of the legs at the beginning and end of the ski season to detect any fatigue cracks that might develop in attachment holes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048131
EISBN: 978-1-62708-225-9
... Abstract The springs formed from 3.8 mm diam cold-drawn carbon steel wire failed to comply with load-test requirements. A split wire in the spring was revealed by investigation. A smooth heat-tinted longitudinal zone was observed in the fracture. It was concluded that the spring failed...
Abstract
The springs formed from 3.8 mm diam cold-drawn carbon steel wire failed to comply with load-test requirements. A split wire in the spring was revealed by investigation. A smooth heat-tinted longitudinal zone was observed in the fracture. It was concluded that the spring failed in the load test due to the split wire. The reason for the condition was interpreted to be overdrawing which resulted in intense internal strains, high circumferential surface tension, and decreased ductility.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001810
EISBN: 978-1-62708-241-9
... been fabricated from spring steel which, according to stress calculations, did not have sufficient torsional strength. Examination of the damaged parts confirmed the finding, revealing that all fractures started at a shoulder radius in an area of high stress concentration. Based on the investigation...
Abstract
Several torsion bars had failed in a projectile weaving machine and were analyzed to determine the cause. Specimens prepared from the damaged components were subjected to visual inspection, hardness testing, chemical analysis, and metallurgical evaluations. The failed torsion bars had been fabricated from spring steel which, according to stress calculations, did not have sufficient torsional strength. Examination of the damaged parts confirmed the finding, revealing that all fractures started at a shoulder radius in an area of high stress concentration. Based on the investigation, the shoulder radius should be increased to alleviate stress and the working torsion angle of the bar should be decreased to improve safety factors.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001042
EISBN: 978-1-62708-214-3
... Abstract Failure occurred in a type 304 stainless steel leaf spring attached to the undercarriage assembly of an airport shuttle train. Failure analysis showed that the fracture was caused by low-cycle, reversed bending fatigue. The stresses leading to failure were imposed by poor alignment...
Abstract
Failure occurred in a type 304 stainless steel leaf spring attached to the undercarriage assembly of an airport shuttle train. Failure analysis showed that the fracture was caused by low-cycle, reversed bending fatigue. The stresses leading to failure were imposed by poor alignment. It was recommended that improved assembly procedures be used and that, if another failure occurred, a steel of higher fatigue strength be used.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0051292
EISBN: 978-1-62708-225-9
... Abstract Type 302 stainless steel springs used in a printing operation failed by breaking into several pieces after two months in service. The springs were operating over a very small deflection and were regulating the flow of ink, in which they were constantly immersed. Fatigue fractures...
Abstract
Type 302 stainless steel springs used in a printing operation failed by breaking into several pieces after two months in service. The springs were operating over a very small deflection and were regulating the flow of ink, in which they were constantly immersed. Fatigue fractures on every piece of the spring were revealed by visual examination. Each of the fractures was found to be oriented at 45 deg to the wire axis. Clear evidence of pitting corrosion at the fatigue fracture origin was also observed. Free chloride ions were revealed to be present in the ink in which the spring was operating. An alternative ink that contained no free chloride ions was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048117
EISBN: 978-1-62708-235-8
... Abstract Two outer valve springs made from air-melted 6150 pretempered steel wire broke during production engine testing. The springs were 50 mm in OD and 64 mm in free length, had five coils and squared-and-ground ends, and were made of 5.5 mm diam wire. It was revealed that fracture...
Abstract
Two outer valve springs made from air-melted 6150 pretempered steel wire broke during production engine testing. The springs were 50 mm in OD and 64 mm in free length, had five coils and squared-and-ground ends, and were made of 5.5 mm diam wire. It was revealed that fracture was nucleated by an apparent longitudinal subsurface defect. The defect was revealed by microscopic examination to be a large pocket of nonmetallic inclusions (alumina and silicate particles) at the origin of the fracture. Partial decarburization of the steel was observed at the periphery of the pocket of inclusions. Torsional fracture was indicated by the presence of beach marks at a 45 deg angle to the wire axis. It was established that the spring fractured by fatigue nucleated at the subsurface defect.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001158
EISBN: 978-1-62708-225-9
... Abstract A steel valve spring meeting Steel-Iron-Test 1570 fractured during the high-stress condition of the operation of its valve. Metallographic examination of a transverse section adjacent to the fracture and a longitudinal section through the crack showed the steel was free of major...
Abstract
A steel valve spring meeting Steel-Iron-Test 1570 fractured during the high-stress condition of the operation of its valve. Metallographic examination of a transverse section adjacent to the fracture and a longitudinal section through the crack showed the steel was free of major defects and was of high purity, although a number of minor surface defects such as rolling laps were found. The spring was heat treated and its surface strengthened by shot-peening, but the surface was also decarburized to a depth of approximately 0.03 mm which resulted in a lowering of the surface hardness. The fracture of this valve spring is therefore primarily due to surface defects, and secondly perhaps also to weak surface decarburization. No recommendation resulted from the investigation except to note that comparatively minor effects suffice to cause fractures in highly stressed springs.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048124
EISBN: 978-1-62708-235-8
... it was reoriented to the plane normal to the major tensile axis by sufficient loading. The shot-peening procedure was altered to create adequate surface compression at all stressed points on the springs. Cracks Galling Orientation Tensile stress Valve spring steel Surface treatment related failures...
Abstract
Presence of transverse marks which were remnant of grinding was indicated in a failed valve spring made from ground rod. The shot-peening pattern was light at this location. A transverse crack was found to grow from one such mark under the influence of local stress fields until it was reoriented to the plane normal to the major tensile axis by sufficient loading. The shot-peening procedure was altered to create adequate surface compression at all stressed points on the springs.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048128
EISBN: 978-1-62708-225-9
... Abstract A fractograph of the failed spring was found to indicate light streaks are parallel to the wire axis. A darker depressed area was visible between the streaks and below the center of the fractograph in which distinct outlines that represent sharp corners in the depressions were revealed...
Abstract
A fractograph of the failed spring was found to indicate light streaks are parallel to the wire axis. A darker depressed area was visible between the streaks and below the center of the fractograph in which distinct outlines that represent sharp corners in the depressions were revealed by careful examination. A hard material (mill scale) was assumed to have been impressed during drawing of the wire and was broken out during peening, leaving the depressions with sharp-bottomed corners. Spring was concluded to have failed due to a surface defect.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001800
EISBN: 978-1-62708-241-9
... determined that the fractures stemmed from electric arc damage. Intergranular quench cracks in the transformed untempered martensite on the surface of the spring provided crack initiations that propagated during operation causing fatigue fracture. torsion springs fracture electrical arcing steel...
Abstract
An electric transport vehicle, similar to an electric trolley or subway rail car, experienced frequent breakdowns due to in-service fractures of torsion springs that support the weight of an overhead electric pickup assembly. Scanning electron microscopy and metallographic examinations determined that the fractures stemmed from electric arc damage. Intergranular quench cracks in the transformed untempered martensite on the surface of the spring provided crack initiations that propagated during operation causing fatigue fracture.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048129
EISBN: 978-1-62708-225-9
.... This was reported to have occurred when the fracture plane changed to an angle with the wire axis in response to the torsional strain. The spring failure was concluded to have originated at the seam. Service life Stresses Spring steel Fatigue fracture The failure shown in Fig. 1(a) began at the seam...
Abstract
Spring failures were investigated in this study. A seam that extended more than 0.05 mm below the wire surface was revealed and the fatigue-fracture front progressed downward from several origins. A crack that is triangular in outline was produced by each of the fronts. This was reported to have occurred when the fracture plane changed to an angle with the wire axis in response to the torsional strain. The spring failure was concluded to have originated at the seam.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001220
EISBN: 978-1-62708-225-9
.... In order to decrease the stress, the construction has meantime been modified. Cracking (fracturing) Helical springs Torsional fatigue Spring steel Fatigue fracture A helical compression spring with 10 turns made of 1.8 mm thick wire which was under high pressure during tension applied...
Abstract
A helical compression spring with ten turns made of 1.8 mm thick wire which was under high pressure during tension applied to a rocker arm broke on the test stand in the third turn. The fracture was a torsion fracture that initiated in the highly loaded inner fiber and showed in its origin the characteristics of a fatigue fracture. A longitudinal fold was located at the fracture crack breakthrough which could still be observed at the fourth and fifth turns, where a further incipient crack originated. A metallographic section was made directly next to the fracture path and the fold was cut. It showed decarburized edges in the outer slanted part and this most likely occurred during rolling. The inner radially proceeding part, however, was probably a fatigue fracture originating in the fold. The fracture of this highly stressed spring was therefore accelerated by a rolling defect. In order to decrease the stress, the construction has meantime been modified.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048143
EISBN: 978-1-62708-235-8
... was concluded to be the reason of the fatigue failure. Rack plating or barrels with fixed button contacts at many points instead of dangler-type contacts were recommended to avoid hard spots. Cadmium plating Cylinders Electric arcs Pneumatic devices Spring steel Surface treatment related failures...
Abstract
A cadmium-plated music-wire return spring that operated in a pneumatic cylinder designed for infinite life at a maximum stress level of 620 MPa failed after 240,000 cycles. An extremely hard and small kernel, which looked like a weld deposit, was observed at the center of the fractured surface. The kernel was assumed to have resulted from extreme localized overheating. These springs were reported to have been barrel electroplated after fabrication. The intermittent contact with the dangler (suspended cathode contact) as the barrel rotated allowed high local currents when the last contact was broken was revealed to have resulted in an arc that caused local melting of the metal being plated. The molten metal was interpreted to have been quenched instantly by the plating solution and by the mass of the cold metal of the spring. The hard spot caused by arcing during plating was concluded to be the reason of the fatigue failure. Rack plating or barrels with fixed button contacts at many points instead of dangler-type contacts were recommended to avoid hard spots.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001118
EISBN: 978-1-62708-214-3
... Abstract Failure of AISI type 321 stainless steel internal springs from newly manufactured lip seals on a shaft between a turbine power unit and a pump in a commercial aircraft secondary unit was investigated. Examination of the coils from two failed springs showed that both had failed...
Abstract
Failure of AISI type 321 stainless steel internal springs from newly manufactured lip seals on a shaft between a turbine power unit and a pump in a commercial aircraft secondary unit was investigated. Examination of the coils from two failed springs showed that both had failed by fatigue. The springs contained drawing defects that served as the fatigue crack initiation sites. It was recommended that the wire drawing process be investigated for various levels of steel cleanliness to predict the incidence of drawing defects at the wire surface. Stress analysis to determine the minimum tolerable defect size was also recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048147
EISBN: 978-1-62708-234-1
... Abstract The power-type counterbalance spring, formed from hardened-and-tempered carbon steel strip and subsequently subjected to phosphating treatment, fractured at the two locations during fatigue testing. A rust colored dark band at the inside edge of the fracture surface was disclosed...
Abstract
The power-type counterbalance spring, formed from hardened-and-tempered carbon steel strip and subsequently subjected to phosphating treatment, fractured at the two locations during fatigue testing. A rust colored dark band at the inside edge of the fracture surface was disclosed during investigation. Etch pits were revealed by the cleaned surface which were never observed on properly phosphated coating. It was interpreted that the spring had been subjected to an abnormal acid attack in pickling or phosphating which had resulted in considerable absorption of hydrogen by the metal and hence embrittlement. The part was concluded to have cracked during phosphating or excessive acid pickling before phosphating.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001119
EISBN: 978-1-62708-214-3
... Abstract To samples of helical compression springs were returned to the manufacturer after failing in service well short of the component design life. Spring design specifications required conformance to SAE J157, “Oil Tempered Chromium Silicon Alloy Steel Wire and Springs.” Each spring...
Abstract
To samples of helical compression springs were returned to the manufacturer after failing in service well short of the component design life. Spring design specifications required conformance to SAE J157, “Oil Tempered Chromium Silicon Alloy Steel Wire and Springs.” Each spring was installed in a separate heavy truck engine in an application in which spring failure can cause total engine destruction. The springs were composed of chromium-silicon steel, with a hardness ranging from 50 to 54 HRC. Chemical composition and hardness were substantially within specification. Failure initiated from the spring inside coil surface. Examination of the fracture surface using scanning electron microscopy showed no evidence of fatigue. Final fracture occurred in torsion. X-ray diffraction analysis revealed high inner-diameter residual stresses, indicating inadequate stress relief from spring winding. It was concluded that failure initiation was caused by residual stress-driven stress-corrosion cracking, and it was recommended that the vendor provide more effective stress relief.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001153
EISBN: 978-1-62708-225-9
... to a state of internal stress which favored fracture of the spring. Shot blasting Torsional fatigue Valve springs Spring steel Surface treatment related failures Fatigue fracture The fatigue strength of parts which are subjected to reverse bending or torsional stresses can be considerably...
Abstract
A valve spring made of 4.1 mm diam wire, designed to withstand 10,000,000 stress cycles, fractured after only 2,000,000 cycles. The surface displayed impressions which indicated it had been treated by shot blasting. The spring has broken in two places. Fracture 1 was a torsional fatigue fracture which has started from a lobe-like surface defect and not, as is usual, from a point on the most highly stressed inner surface. Fracture 2, on the other hand, was a bending fatigue fracture with a starting point on both the inner and the outer surface of the spiral. The objective of the shot blasting, to put the surface into a state of even compressive internal stress, which must first be overcome during subsequent bending and torsional loading before the boundary zone comes under tensile stress, was therefore not realized in this case. On the contrary, the shot blasting led to a state of internal stress which favored fracture of the spring.
1