Skip Nav Destination
Close Modal
Search Results for
Solder alloy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 50 Search Results for
Solder alloy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 30 August 2021
Image
Published: 30 August 2021
Fig. 2 Schematic demonstration of the viscoplasticity effect of a solder alloy (SAC305). Legend number is for strain rate changing from 10 −4 /s to 10/s.
More
Image
Published: 30 August 2021
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006827
EISBN: 978-1-62708-329-4
... at the assembly level. This article covers the properties of solder alloys and the corresponding intermetallic compounds. It includes the dominant failure modes introduced during the solder joint manufacturing process and in field-use applications. The corresponding failure mechanism and root-cause analysis...
Abstract
Due to the recent requirement of higher integration density, solder joints are getting smaller in electronic product assemblies, which makes the joints more vulnerable to failure. Thus, the root-cause failure analysis for the solder joints becomes important to prevent failure at the assembly level. This article covers the properties of solder alloys and the corresponding intermetallic compounds. It includes the dominant failure modes introduced during the solder joint manufacturing process and in field-use applications. The corresponding failure mechanism and root-cause analysis are also presented. The article introduces several frequently used methods for solder joint failure detection, prevention, and isolation (identification for the failed location).
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001132
EISBN: 978-1-62708-214-3
... environment. On this basis, it was concluded that creep of the solder alloy was the most probable cause of failure. Creep (materials) Fire protection Soldered joints Solders Solder alloy Creep fracture/stress rupture Background A sprinkler head unit that was installed in a smoking lounge...
Abstract
A sprinkler head unit that was installed in a smoking lounge of a multi story office building in 1975 failed, causing substantial water damage. There was no fire in the building. A set of four sprinkler heads -- three that had been installed in 1975 (the failed unit, an unfailed unit from the same room, and an unfailed unit from another room) and an unused 1991 unit -- were examined. casting revealed no material defects or mechanical damage. Because of several environmental factors, it was suspected that the failed unit was exposed to temperatures much above the normal office environment. On this basis, it was concluded that creep of the solder alloy was the most probable cause of failure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001843
EISBN: 978-1-62708-241-9
... largely become a problem of the past, with the use of alloying additions, like lead, to combat it. However, the introduction of RoHS could change all of that. Tin-lead solders have been used in the electronic industry for decades because of their good conductivity, fluidity, and solderability. The lead...
Abstract
The operator of an electric transit system purchased a large number of tin-plated copper connectors, putting some in service and others in reserve. Later, when some of the reserve connectors were inspected, the metal surfaces were covered with spots consisting of an ash-like powder and the plating material had separated from the substrate in many areas. Several connectors, including some that had been in service, were examined to determine what caused the change. The order stated that the connectors were to be coated with a layer of tin-bismuth (2% Bi) to guard against tin pest, a type of degradation that occurs at low temperatures. Based on the results of the investigation, which included SEM/EDS analysis, inductively coupled plasma spectroscopy, and x-ray diffraction, the metal surfaces contained less than 0.1% Bi and thus were not adequately protected against tin pest, which was confirmed as the failure mechanism in the investigation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001441
EISBN: 978-1-62708-220-4
... 5% antimony, which is more difficult to use than the usual tin-lead alloys. The use of this particular type of solder was a contributory factor in the production of unsound joints in the samples examined. Expansion Freezing Moisture Pipe joints Wetting Sn-5Sb Copper Joining-related...
Abstract
Soft-soldered copper pipe joints used in refrigerating plants failed. The solder had not adhered uniformly to the pipe surface. In addition, there were some longitudinal grooves on the pipe surfaces, parts of which were not filled with solder. The unsoldered areas formed cavities within the joints, some of which had been in direct communication with the outsides via the grooves or interconnected cavities. On cooling, moisture condensed on the external surfaces. Some of this was drawn by capillary action into the cavities in open communication with the external surface. On continued cooling to below freezing-point, water that entered the cavities solidified. This was accompanied by a slight increase in volume, which collapsed the pipe walls. In the examples, the pipe ends had not been properly tinned. The solder used was found to be of the tin-antimony type, containing about 5% antimony, which is more difficult to use than the usual tin-lead alloys. The use of this particular type of solder was a contributory factor in the production of unsound joints in the samples examined.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001391
EISBN: 978-1-62708-215-0
... (e.g., overnight). As part of a quality control test program, a die shear test was performed on the resistors after solder attachment to the carrier strips. The most recent attachment shear forces varied from 0.4 to 2 kg (0.8 to 4.5 lb.). The resistors with low force values reportedly exhibited...
Abstract
Several surface-mount chip resistor assemblies failed during monthly thermal shock testing and in the field. The resistor exhibited a failure mode characterized by a rise in resistance out of tolerance for the system. Representative samples from each step in the manufacturing process were selected for analysis, along with additional samples representing the various resistor failures. Visual examination revealed two different types of termination failures: total delamination and partial delamination. Electron probe microanalysis confirmed that the fracture occurred at the end of the termination. Transverse sections from each of the groups were examined metallographically. Consistent interfacial separation was noted. Fourier transform infrared and EDS analyses were also performed. It was concluded that low wraparound termination strength of the resistors had caused unacceptable increases in the resistance values, resulting in circuit nonperformance at inappropriate times. The low termination strength was attributed to deficient chip design for the intended materials and manufacturing process and exacerbated by the presence of polymeric contamination at the termination interface.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001674
EISBN: 978-1-62708-234-1
... noble metal, gold, was being corroded preferentially to a much more reactive alloy, the Pb-Sn-In solder. The obvious conclusion that the corrosion was due to a complexing agent, specific for gold amongst the available metals, was difficult to prove because of the small amount of corrosion product...
Abstract
Accelerated aging tests on detonator assemblies, to verify the compatibility of gold bridgewire and Pd-In-Sn solder with the intended explosives, revealed an unusual form of corrosion. The tests, conducted at 74 deg C (165 deg F) and 54 deg C (130 deg F), indicated a preferential attack of the gold. To investigate the problem, a matrix of test units was produced and analyzed. Scanning electron microscopy, EDX analysis, and x-ray diffraction techniques were used to determine the extent of the corrosion and identify the corrosion products. The results indicated that the preferential attack of the gold was due to HCN formed by decomposition of the explosive powder at high temperatures. Other associated reactions were also observed including the subsequent attack of the solder by the gold corrosion product and degradation of the plastic header.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047570
EISBN: 978-1-62708-221-1
..., and Soldering , Volume 6 of Metals Handbook (9th ed.), 1983), and the ASM Committee on Failure Analysis of Weldments (for Failure Analysis and Prevention , Volume 10 of Metals Handbook (8th ed.), 1975). Selected Reference Selected Reference • Becker W.T. and McGarry D. , Mechanisms...
Abstract
A pipe in a chip conveyor cracked at the toe of an exterior fillet weld connecting a flange to the pipe. The chip conveyor consisted of several spool sections. Each section was made up of a length of low-alloy steel pipe and two flanges, which were welded to each end. The composition specified for the pipe steel was 0.25C-0.98Mn-3.52Ni-1.34Cr-0.24Mo, which approximates a 9300 steel with high molybdenum. Investigation supported the conclusion that the conveyor pipe failed by brittle fracture, which was attributed to the stresses induced in forcing the circular flange over the elliptical section of the pipe. The toe of the weld and the adjacent undercut were stress raisers that determined the point of major crack origin. Under residual stress, the internal point of incomplete fusion also initiated additional cracks. Recommendations included ensuring a proper fit between an elliptical flange and pipe end to eliminate the cracking.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047621
EISBN: 978-1-62708-229-7
... Committee on Weld Discontinuities (for Welding, Brazing;, and Soldering , Volume 6 of Metals Handbook (9th ed.), 1983), and the ASM Committee on Failure Analysis of Weldments (for Failure Analysis and Prevention , Volume 10 of Metals Handbook (8th ed.), 1975). Selected Reference Selected...
Abstract
The case and stiffener of an inner-combustion-chamber case assembly failed by completely fracturing circumferentially around the edge of a groove arc weld joining the case and stiffener to the flange. The assembly consisted of a cylindrical stiffener inserted into a cylindrical case that were both welded to a flange. The case, stiffener, flange, and weld deposit were all of nickel-base alloy 718. It was observed that a manual arc weld repair had been made along almost the entire circumference of the original weld. Investigation (visual inspection, 0.5x macrographs, and 10x etched with 2% chromic acid plus HCl views) supported the conclusions that failure was by fatigue from multiple origins caused by welding defects. Ultimate failure was by tensile overload of the sections partly separated by the fatigue cracks. Recommendations included correct fit-up of the case, stiffener, and flange and more skillful welding techniques to avoid undercutting and unfused interfaces.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0089766
EISBN: 978-1-62708-224-2
..., and Soldering , Volume 6 of Metals Handbook (9th ed.), 1983), and the ASM Committee on Failure Analysis of Weldments (for Failure Analysis and Prevention , Volume 10 of Metals Handbook (8th ed.), 1975). Selected Reference Selected Reference • Fatigue Failures , Failure Analysis and Prevention...
Abstract
Two tubular AISI 1025 steel posts (improved design) in a carrier vehicle failed by cracking at the radius of the flange after five weeks of service. The posts were two of four that supported the chassis of the vehicle high above the wheels. The original design involved a flat flange of low-carbon low-alloy steel that was welded to an AISI 1025 steel tube, and the improved design included placing the welded joint of the flange farther away from the flange fillet. Investigation (visual inspection and chemical analysis) supported the conclusion that the failures in the flanges of improved design were attributed to fatigue cracks initiating at the aluminum oxide inclusions in the flange fillet. Recommendations included retaining the improved design of the flange with the weld approximately 50 mm (2 in.) from the fillet, but changing the metal to a forging of AISI 4140 steel, oil quenched and tempered to a hardness of 241 to 285 HRB. Preheating to 370 deg C (700 deg F) before and during welding with AISI 4130 steel wire was specified. It was also recommended that the weld be subjected to magnetic-particle inspection and then stress relieved at 595 deg C (1100 deg F), followed by final machining.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048808
EISBN: 978-1-62708-228-0
... “Hardfacing, Weld Cladding, and Dissimilar Metal Joining” in Welding, Brazing, and Soldering , Volume 6 of the ASM Handbook ). The precipitates followed the austenitic regions into the duplex structure and eventually disappeared. They undoubtedly contributed to the cracking that occurred...
Abstract
The welds joining the liner and shell of a fluid catalytic cracking unit failed. The shell was made of ASTM A515 carbon steel welded with E7018 filler metal. The liner was made of type 405 stainless steel and was plug welded to the shell using ER309 and ER310 stainless steel filler metal. Fine cracks starting inside the weld zone and spreading outward through the weld and toward the surface were observed during examination. Decarburization and graphitization of the carbon steel at the interface was noted. The high carbon level was found to allow martensite to form eventually. The structure was found to be austenitic in the area where the grain-boundary precipitates appeared heaviest. The composition of the precipitates was analyzed using an electron microprobe to reveal presence of sulfur. Microstructural changes in the weld alloy at the interface were interpreted to be caused by dilution of the alloy and the presence of sulfur caused hot shortness. The necessary internal stress to produce extensive cracking was produced by the differential thermal expansion of the carbon and stainless steels. Periodic careful gouging of the affected areas followed by repair welding was recommended.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
... metals to ceramics. Procedures for brazing various materials such as cast irons, steels, stainless steels, heat-resistant alloys, aluminum alloys, titanium alloys, copper alloys, reactive and refractory metals, and carbon and graphite are described in Welding, Brazing, and Soldering , Volume 6...
Abstract
The various methods of furnace, torch, induction, resistance, dip, and laser brazing are used to produce a wide range of highly reliable brazed assemblies. However, imperfections that can lead to braze failure may result if proper attention is not paid to the physical properties of the material, joint design, prebraze cleaning, brazing procedures, postbraze cleaning, and quality control. Factors that must be considered include brazeability of the base metals; joint design and fit-up; filler-metal selection; prebraze cleaning; brazing temperature, time, atmosphere, or flux; conditions of the faying surfaces; postbraze cleaning; and service conditions. This article focuses on the advantages, limitations, sources of failure, and anomalies resulting from the brazing process. It discusses the processes involved in the testing and inspection required of the braze joint or assembly.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006770
EISBN: 978-1-62708-295-2
... is very useful to illustrate abrupt or gradual composition variations at areas of interest on a sample surface or prepared specimen. Figure 13 shows a line scan on a metallographically prepared section of a printed circuit board with multiple failed solder connections. The line scans indicate...
Abstract
X-ray spectroscopy is generally accepted as the most useful ancillary technique that can be added to any scanning electron microscope (SEM), even to the point of being considered a necessity by most operators. While “stand-alone” x-ray detection systems are used less frequently in failure analysis than the more exact instrumentation employed in SEMs, the technology is advancing and is worthy of note due to its capability for nondestructive analysis and application in the field. This article begins with information on the basis of the x-ray signal. This is followed by information on the operating principles and applications of detectors for x-ray spectroscopy, namely energy-dispersive spectrometers, wavelength-dispersive spectrometers, and handheld x-ray fluorescence systems. The processes involved in x-ray analysis in the SEM and handheld x-ray fluorescence analysis are then covered. The article ends with a discussion on the applications of x-ray spectroscopy in failure analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001822
EISBN: 978-1-62708-180-1
... some solder penetration. The same results were observed when liquid tin, lead, zinc, cadmium, or Lipowitz alloy (a tin-lead-bismuth-cadmium alloy sometimes containing indium) was used. In 1968, studies were conducted on the influence of cold work on the LME of pure iron and Fe-2Si ( Ref 27 ). Sheet...
Abstract
This article provides a background of friction-bearing failures due to overheating. The failures of locomotive axles caused by overheated traction-motor support bearings are discussed. The article also describes liquid-metal embrittlement (LME) in steel. It examines the results of various axle studies, with illustrations and concludes with information on the simulation of the LME mechanism.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001782
EISBN: 978-1-62708-241-9
... and weldability of conventional titanium alloys . In: ASM Handbook Volume 6: Welding, Brazing, and Soldering , 10th edn. , pp. 507 – 523 . ASM International ( 1993 ) 10.31399/asm.hb.v06.a0001415 Selected references Selected references • Fatigue Failures , Failure Analysis and Prevention , Vol...
Abstract
The head on a golf club driver developed multiple cracks during normal use. The head was a hollow shell construction made from a titanium alloy. Analysis and additional investigation revealed a progressive failure that initiated on the interior surface of the face plate along a deep, concentric groove created during a press forming operation. It was also determined that atmospheric contamination occurred during the welding of the head, causing embrittlement, which may have also contributed to the failure. Recommendations were made addressing the problems that were observed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006764
EISBN: 978-1-62708-295-2
... can be used to detect internal laws in most engineering metals and alloys. Bonds produced by welding, brazing, soldering, and adhesive bonding can also be ultrasonically examined. In-line techniques have been developed for monitoring and classifying materials as acceptable, salvageable, or scrap...
Abstract
Nondestructive testing (NDT), also known as nondestructive evaluation (NDE), includes various techniques to characterize materials without damage. This article focuses on the typical NDE techniques that may be considered when conducting a failure investigation. The article begins with discussion about the concept of the probability of detection (POD), on which the statistical reliability of crack detection is based. The coverage includes the various methods of surface inspection, including visual-examination tools, scanning technology in dimensional metrology, and the common methods of detecting surface discontinuities by magnetic-particle inspection, liquid penetrant inspection, and eddy-current testing. The major NDE methods for internal (volumetric) inspection in failure analysis also are described.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001385
EISBN: 978-1-62708-215-0
...: ANSI/UL 486A Wire Connectors and Soldering Lugs for use with Copper Conductors ANSI/UL 486B Wire Connectors for Use with Aluminum Conductors ANSI/UL 486E Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors Standards 486B and 486E require that terminals intended...
Abstract
Three instances involving the failure of aluminum wiring at the service entrance to single-family homes are discussed. Arcing led to a fire which severely damaged a home in one case. In a second, the failure sequence was initiated by water intrusion into the service entrance electrical box during construction of the home. In the third, failure was caused by a marginal installation. Strict adherence to all applicable electrical codes and standards is critical in the case of aluminum wiring. Electrical components not specifically designed for aluminum must never be used with this type of wiring. All doors, panels and similar portions of electrical boxes should be secured to prevent damage to surroundings in the event of an electrical fault. If symptoms of arcing are observed, professional service should be sought. The latest designs of connectors for use with aluminum wiring are less susceptible to deviations in installation practice.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001632
EISBN: 978-1-62708-234-1
... Stainless Steel Irradiated with 800 MeV Protons,” J. Nucl. Mater. , 1999 . 10.1016/S0022-3115(99)00147-6 7. Welding, Brazing and Soldering , vol. 6 , ASM Handbook , ASM International , 1997 , p. 575 . 8. Carsughi F. , Derz H. , Ferguson P. , Pott G. , Sommer W...
Abstract
A double-walled, hemispherical metal beam exit window made of alloy 718 developed a crack during service, leading to coolant leakage. The window had been exposed to radiation damage from 800 MeV protons and a cyclic stress from 600 MPa tensile to near zero induced by numerous temperature cycles calculated to be from 400 to 30 deg C (752 to 86 deg F). The window was activated to >200 Sv/h. It was determined through analysis using remote handling techniques and hot cells that the crack initiated near a spot weld used to affix thermocouples to the window surface. In addition to analysis of the crack, some of the irradiated material from the window was used to measure mechanical properties. Hot cell techniques for preparation of samples and testing were developed to determine true operating conditions of radiation, strain, and temperature.
1