1-20 of 20 Search Results for

Sintering (powder metallurgy)

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047793
EISBN: 978-1-62708-217-4
.... The microstructure of the metal in the impeller exhibited scattered porosity and carbide particles and appeared to be a sintered powder metallurgy compact. Metallographic examination of a section through the damaged splines and of a section through the adjacent undamaged part of the same splines disclosed...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001784
EISBN: 978-1-62708-241-9
... surfaces showing brittle fracture are possibly due to carburized layer. Figure 5 shows fractured core of the socket indicating loose spherical particles showing poor sintering step in powder metallurgy (PM) production process or inclusion particles. Figures 6 and 7 show dimples indicative of some...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001265
EISBN: 978-1-62708-215-0
... microstructure were recommended. Ceramic coatings Sintering (powder metallurgy) Surgical implants Ti-6Al-4V ELI UNS R56407 Fatigue fracture Background Total knee prostheses were retrieved from patients after radiographs revealed fracture of the Ti-6Al-4V extra low interstitial (ELI) metal...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
... and sulfur treatments for sulfide, alumina, and silicate inclusions ( Ref 19 ). Hard inclusions in the workpiece material can abrade the cutting tool material ( Ref 20 ). Inclusions, porosity, and oxide films in powder metallurgy steels can reduce their machinability, but closing the pores, increased...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
... resistance, porosity can be controlled to very low values (<0.5% in many cases). For these materials, various sintering and densification techniques have been developed, such as reaction-bonded sintering and hot pressing, using very pure, fully densified powder of very small grain size. Porosity control...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
..., stainless steel, age-hardening aluminum alloys, etc.), its general product form (e.g., wrought, cast, powder metallurgy, etc.), and the processing method (e.g., forged, die cast, injection molded, etc.). All of these factors must be considered when the shape of a part is defined during configuration design...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003532
EISBN: 978-1-62708-180-1
.... While pieces with a small section size that would normally be sectioned with an abrasive cutter can be cut with a precision saw, the cutting time is appreciably greater, but the depth of damage is much less. Precision saws are widely used for sectioning sintered carbides, ceramic materials, thermally...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
... for sectioning sintered carbides, ceramic materials, thermally sprayed coatings, printed circuit boards, electronic components, bone, teeth, and so on. Mounting The primary purpose of mounting metallographic specimens is for convenience in handling specimens of difficult shapes or sizes during...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... to carburization than the chromia scale-forming alloys ( Ref 19 ). Nitridation Nitridation of alloys in ammonia environments is well known in ammonia and heat treating industries ( Ref 20 ). Nitridation attack by N 2 also is known in the powder metallurgy industry. The kinetics of nitridation in N 2...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001808
EISBN: 978-1-62708-180-1
... HV. The microstructure of the metal in the impeller exhibited scattered porosity and carbide particles and appeared to be a sintered powder metallurgy compact. Metallographic examination of a section through the damaged splines and of a section through the adjacent undamaged part of the same...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
.... Intergranular brittle fracture is very prevalent in ceramic materials and is often present in poorly sintered powder metallurgy constructs. It is necessary for the practicing failure analyst to understand that intergranular brittle fracture is not always due to defects and improper processing. This mechanism...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006810
EISBN: 978-1-62708-329-4
... and appeared to be a sintered powder metallurgy compact. Metallographic examination of a section through the damaged splines and of a section through the adjacent undamaged part of the same splines disclosed no material defects. The microstructure indicated that the shaft had been satisfactorily heat...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... in poorly sintered powder-metallurgy constructs. It is necessary for the practicing failure analyst to understand that intergranular brittle fracture is not always due to defects and improper processing. This mechanism can result from well-controlled processes that provide benefit that can outweigh...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
Book Chapter

Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006764
EISBN: 978-1-62708-295-2
... corrode the metal. Surface films may prevent detection of discontinuities. Penetrant may be a source of contamination that masks results in subsequent chemical analysis of fracture surfaces. The process is generally not suited to inspection of low-density powder metallurgy parts or other porous...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4