Skip Nav Destination
Close Modal
Search Results for
Shot peening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 98 Search Results for
Shot peening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048124
EISBN: 978-1-62708-235-8
... Abstract Presence of transverse marks which were remnant of grinding was indicated in a failed valve spring made from ground rod. The shot-peening pattern was light at this location. A transverse crack was found to grow from one such mark under the influence of local stress fields until...
Abstract
Presence of transverse marks which were remnant of grinding was indicated in a failed valve spring made from ground rod. The shot-peening pattern was light at this location. A transverse crack was found to grow from one such mark under the influence of local stress fields until it was reoriented to the plane normal to the major tensile axis by sufficient loading. The shot-peening procedure was altered to create adequate surface compression at all stressed points on the springs.
Image
in X-Ray Diffraction Residual Stress Measurement in Failure Analysis
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 15 Effects of grinding and shot peening on surface and subsurface residual stress in low-carbon (CK 45) steel tested in seawater. (a) Residual stress versus depth profiles. (b) Bending fatigue stress-number of cycles ( S-N ) curves. Source: Ref 36
More
Image
Published: 30 August 2021
Fig. 12 Surface imperfections caused by (a) poor shot peening conditions that resulted in deep imperfections compared with (b) normal peening conditions
More
Image
in X-Ray Diffraction Residual-Stress Measurement in Failure Analysis
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 15 Effects of grinding and shot peening on surface and subsurface residual stress in low-carbon (CK45) steel tested in seawater. (a) Residual stress versus depth profiles. (b) Bending fatigue stress/number of cycles curves. Source: Ref 46
More
Image
in X-Ray Diffraction Residual Stress Measurement in Failure Analysis
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 13 Crack tip opening of a shot-peened and residual-stress-free Ti-6Al-4V specimen. Source: Ref 35
More
Image
in X-Ray Diffraction Residual Stress Measurement in Failure Analysis
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 17 S-N curves for as-hardened (gear A) and as-hardened plus double shot peened (gear B) gears. Source: Ref 41
More
Image
in X-Ray Diffraction Residual Stress Measurement in Failure Analysis
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 26 Comparison of the residual stress on the inner diameter of shot-peened coil springs in new and used conditions using XRD
More
Image
in Stress-Rupture Characterization in Nickel-Based Superalloy Gas Turbine Engine Components
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 12 Energy dispersive spectroscope (EDS) indicated shot-peen balls were present prior to aluminide coating process as evidenced by darker aluminide phase present at ball surface. Shot-peen media was found beneath the tip cap of the turbine blade following sectioning
More
Image
in X-Ray Diffraction Residual-Stress Measurement in Failure Analysis
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 13 Crack-tip opening of a shot-peened and residual-stress-free Ti-6Al-4V specimen. Source: Ref 44
More
Image
in X-Ray Diffraction Residual-Stress Measurement in Failure Analysis
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 26 Comparison of residual stress on the inner diameter of shot-peened coil springs in new and used conditions using x-ray diffraction
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046222
EISBN: 978-1-62708-217-4
.... The spindle was then shot peened with S170 shot to an Almen intensity of 0.010 to 0.012 A. Following shot peening, the shank was nickel sulfamate plated to 0.05 mm (0.002 in.) over the finished diam, ground to finished size, and cadmium plated. Visual and stereomicroscopic exam showed faint grinding marks...
Abstract
The spindle of a helicopter-rotor blade fractured after 7383 h of flight service. At every overhaul (the spindle that failed was overhauled six times and reworked twice), any spindle that showed wear was reworked by grinding the shank to 0.1 mm (0.004 in.) under the finished diam. The spindle was then shot peened with S170 shot to an Almen intensity of 0.010 to 0.012 A. Following shot peening, the shank was nickel sulfamate plated to 0.05 mm (0.002 in.) over the finished diam, ground to finished size, and cadmium plated. Visual and stereomicroscopic exam showed faint grinding marks and circumferential grooves on the surface near the fillet at the junction of the shank and fork, which should have been peened over and covered with peening dimples. Evidence found supports the conclusions that the spindle failed in fatigue that originated near the junction of the shank and fork. The nonuniformity of the shot-peened effect on the shank and fillet portions of the spindle resulted from incomplete peeing. The fracture was of the low-stress high-cycle type, initiated by stresses well below the gross yield strength and propagated by thousands of load cycles. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0090626
EISBN: 978-1-62708-218-1
... fabricated after field failures lasted only 50,000 cycles to failure. It was discovered that the percent coverage of shot peening prior and subsequent to the increase in failure incidence was much less than 100%, with a shot peening time of 12 min. The residual-stress state of “as fabricated” springs...
Abstract
A steel spring used in an automotive application suddenly began to fail in the field, although “nothing had changed” in the fabrication process. Fatigue tests using springs fabricated prior to field failures lasted 500,000 cycles to failure, whereas fatigue tests performed on springs fabricated after field failures lasted only 50,000 cycles to failure. It was discovered that the percent coverage of shot peening prior and subsequent to the increase in failure incidence was much less than 100%, with a shot peening time of 12 min. The residual-stress state of “as fabricated” springs in three conditions were evaluated using XRD: springs manufactured prior to failure incidence increase, 12 min peen; springs manufactured following failure incidence increase, 12 min peen; and 60 min peen. The conclusion was that the failure occurred because low peening time significantly decreased the compressive residual-stress levels in the springs. Recommendation was made to increase the time the spring was shot peened from 12 to 60 min.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001679
EISBN: 978-1-62708-229-7
... direction. Since the EB weld is a shrink fit, the surface is in compression, thereby eliminating crack propagation. In addition, shot peening has been employed to produce a compressive material surface since fatigue usually originates at the surface. Pitting was observed down the throat of the venturi...
Abstract
Several mercury diffusion pump stages in the Tritium Purification process at the Savannah River Site (SRS) have been removed from service for scheduled preventive maintenance. These stages have been examined to determine if failure has occurred. Evidence of fatigue around the flange portion of the pump has been seen. In addition, erosion and cavitation inside the throat of the venturi tube and corrosion on the other surface of the venturi tube has been observed. Several measures are being examined in an attempt to improve the performance of these pumps. These measures, as well as the noted observations, are described. Six stages [two machined (MP) and four electron beam (EB) welded] from the mercury diffusion pumps operating in the Tritium Purification process at SRS have been analyzed to determine their condition after nine months of usage. Several cracks were found around the necked region of the two MP stages. The EB welded stages, however, seemed to perform better in service; only two of four stages showed cracking. The cracking is caused by fatigue that has been enhanced by high stresses and tritium in the flange area. The EB welded stage appears to be a step in the right direction. Since the EB weld is a shrink fit, the surface is in compression, thereby eliminating crack propagation. In addition, shot peening has been employed to produce a compressive material surface since fatigue usually originates at the surface. Pitting was observed down the throat of the venturi. This pitting was caused by cavitation and erosion along the length of the venturi tube. Corrosion and pitting was seen on the exterior walls of the diffuser tubes. Stress-corrosion cracks were observed emanating from these corrosion pits. The corrosion likely occurred from the chloride ions present in the process cooling water. Shot peening is now being used in an attempt to place the outside of the diffuser tube in compression to eliminate the stress-corrosion cracking.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001600
EISBN: 978-1-62708-217-4
... examined had cross-sectional thicknesses significantly larger than the web cross-sectional thicknesses of the IT components. Recommendations included changing the web reference dimension of 0.38 in. to include a tolerance range based upon a fracture mechanics model. Also, the shot peening process should...
Abstract
This paper summarizes the results of a failure analysis investigation of a fractured main support bridge made of 7075 aluminum alloy from an army helicopter. The part, manufactured by “Contractor IT,” failed component fatigue testing while those of the original equipment manufacturer (OEM) passed. Metallurgical data collected during this investigation indicated that the difference in fatigue life between the components fabricated by IT and by OEM may be attributable to a difference in dimensions at the web where fatigue crack initiation occurred. The webs of the two OEM parts examined had cross-sectional thicknesses significantly larger than the web cross-sectional thicknesses of the IT components. Recommendations included changing the web reference dimension of 0.38 in. to include a tolerance range based upon a fracture mechanics model. Also, the shot peening process should be controlled especially at the critical areas of the web, to assure complete coverage and proper compressive residual stresses.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006444
EISBN: 978-1-62708-217-4
... fatigue cracks, resulting in a failure mode of corrosion fatigue. It was recommended that all of the horizontal hinge pins be inspected. Those pins determined to be satisfactory for further use should be stripped of cadmium, shot peened, and coated with cadmium to a minimum thickness of 0.0127 mm (0.0005...
Abstract
Helicopter rotor blade components that included the horizontal hinge pin, the associated nut, and the locking washer were examined. Visual examination of the submitted parts revealed that the hinge pin, fabricated from 4340 steel, was broken and that the fracture face showed a flat beach mark pattern indicative of a preexisting crack. The threaded area of the pin had an embedded thread that did not appear to come from the pin. A chemical analysis was conducted on the embedded thread and on an associated attachment to determine the origin of the thread. Analysis showed that the thread and nut were 4140 steel. Scanning electron fractographic examination of the fracture initiation site strongly suggested that the fracture progressed by fatigue. It was concluded that the failure of the horizontal hinge pin initiated at areas of localized corrosion pits. The pits in turn initiated fatigue cracks, resulting in a failure mode of corrosion fatigue. It was recommended that all of the horizontal hinge pins be inspected. Those pins determined to be satisfactory for further use should be stripped of cadmium, shot peened, and coated with cadmium to a minimum thickness of 0.0127 mm (0.0005 in.).
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048616
EISBN: 978-1-62708-217-4
..., the material was changed to A-286, which is less susceptible to carbide precipitation. The bolt is strengthened by shot peening and rolling the threads after heat treatment. Avoiding temperatures in the sensitizing range is desirable, but difficult to ensure because of the application. Bolts Bolts...
Abstract
A T-bolt was part of the coupling for a bleed air duct of a jet engine on a transport plane. Specifications required that the 4.8 mm diam component be made of AISI type 431 stainless steel and heat treated to 44 HRC. The operating temperature of the duct is 425 to 540 deg C (800 to 1000 deg F), but that of the bolt is lower. The T-bolt broke after three years of service. The expected service life was equal to that of the aircraft. It was found that the bolt broke as a result of SCC. Thermal stresses were induced into the bolt by intermittent operation of the jet engine. Mechanical stresses were induced by tightening of the clamp around the duct, which in effect acted to straighten the bolt. The action of these stresses on the carbides that precipitated in the grain boundaries resulted in fracture of the bolt. Due to the operating temperatures of the duct near the bolt, the material was changed to A-286, which is less susceptible to carbide precipitation. The bolt is strengthened by shot peening and rolling the threads after heat treatment. Avoiding temperatures in the sensitizing range is desirable, but difficult to ensure because of the application.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089651
EISBN: 978-1-62708-235-8
... etched 300x magnification) supported the conclusion that the rocker levers failed in fatigue, with casting defects, or spiking, acting as stress raisers to initiate failures in highly loaded engine tests. Recommendations included shot peening of the levers as an interim measure to reduce the possibility...
Abstract
Several diesel-engine rocker levers (malleable iron similar to ASTM A 602, grade M7002) failed at low hours in overspeed, over-fuel, highly loaded developmental engine tests. Identical rocker levers had performed acceptably in normal engine tests. The rocker levers were failing through the radius of an adjusting screw arm. The typical fracture face exhibited two distinct modes of crack propagation: the upper portion indicated overload at final fracture, whereas the majority of the fracture suggested a fatigue fracture. Investigation (visual inspection, 1.5x/30x/60x magnification, and nital etched 300x magnification) supported the conclusion that the rocker levers failed in fatigue, with casting defects, or spiking, acting as stress raisers to initiate failures in highly loaded engine tests. Recommendations included shot peening of the levers as an interim measure to reduce the possibility of failure and redesign to increase the cross-sectional area of the levers.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091096
EISBN: 978-1-62708-234-1
... groove in the shaft had performed its function, but at a lower overload level than intended. Recommendations included increasing the fatigue strength of the shaft by shot peening the shear groove to minimize chatter. Shafts (power) Shot peening Torsional fatigue 4340 UNS G43400 Fatigue...
Abstract
A 4340 steel shaft, the driving member of a large rotor subject to cyclic loading and frequent overloads, broke after three weeks of operation. The driving shaft contained a shear groove at which the shaft should break if a sudden high overload occurred, thus preventing damage to an expensive gear mechanism. The rotor was subjected to severe chatter, which was an abnormal condition resulting from a series of continuous small overloads occurring at a frequency of around three per second. Investigation (visual inspection, hardness testing, and hot acid etch images) supported the conclusion that the basic failure mechanism was fracture by torsional fatigue, which started at numerous surface shear cracks, both longitudinal and transverse, that developed in the periphery of the root of the shear groove. These shear cracks resulted from high peak loads caused by chatter. The shear groove in the shaft had performed its function, but at a lower overload level than intended. Recommendations included increasing the fatigue strength of the shaft by shot peening the shear groove to minimize chatter.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001287
EISBN: 978-1-62708-215-0
..., and mechanical (hardness and tensile properties) analyses of failed shaft specimens were conducted. The examinations showed that the shafts had failed by fatigue. It was recommended that a low-alloy steel (e.g., 3% Ni-Cr) in the hardened and tempered condition and subjected to shot-peening surface-hardening...
Abstract
A recurring piston shaft failure problem on the billet-loading tray of an extrusion press was investigated. Two shafts fractured within a period of 10 days. The shaft was machined from normalized EN3 (AISI C1022) steel stock without further treatment. Visual, microstructural, chemical, and mechanical (hardness and tensile properties) analyses of failed shaft specimens were conducted. The examinations showed that the shafts had failed by fatigue. It was recommended that a low-alloy steel (e.g., 3% Ni-Cr) in the hardened and tempered condition and subjected to shot-peening surface-hardening treatment be used. The provision of a stop to reduce bending stresses was also recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0047606
EISBN: 978-1-62708-228-0
... adjacent to the welds. Use of highly stressed austenitic stainless steels in high-chloride environments having a temperature above 65 deg C (150 deg F) should be discouraged. Solution annealing or shot peening to reduce residual stresses may be advisable. If heat treatment is not feasible after welding...
Abstract
Type 316L stainless steel pipes carrying brine at 120 deg C (250 deg F) and at a pH of about 7, failed by perforation at or near circumferential butt-weld seams. The failure was examined optically and radiographically in the field. Specimens were removed and examined metallographically and with a SEM in the laboratory. The examinations revealed a combination of failure mechanisms. The pitting failure of the welds was attributed to localized attack of an activated surface, in which anodic pits corroded rapidly. Additionally, SCC driven by residual welding stresses occurred in the base metal adjacent to the welds. Use of highly stressed austenitic stainless steels in high-chloride environments having a temperature above 65 deg C (150 deg F) should be discouraged. Solution annealing or shot peening to reduce residual stresses may be advisable. If heat treatment is not feasible after welding, the substitution of a more corrosion-resistant alloy, such as Incoloy 800 or 825, may be necessary.
1