Skip Nav Destination
Close Modal
By
Friedrich Karl Naumann, Ferdinand Spies
By
D.O. Leeser
By
Friedrich Karl Naumann, Ferdinand Spies
By
Friedrich Karl Naumann, Ferdinand Spies
By
Egon Kauczor
By
R.V. Krishnan, S. Radhakrishnan, A.C. Raghuram, V. Ramachandran
By
J.P. Howell, D.Z. Nelson
By
J. Robert Kattus
By
B.V. Krishna, R.K. Sidhu
Search Results for
Sheet metal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 198
Search Results for Sheet metal
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001643
EISBN: 978-1-62708-234-1
... Abstract A crumpled piece of sheet metal had two cracks in a T-junction shape. The relative locations of shear lips in the cracks allowed deduction of which crack happened first, and which direction the cracks propagated. Cracking (fracturing) Sheet metal Sheet metal Ductile fracture...
Abstract
A crumpled piece of sheet metal had two cracks in a T-junction shape. The relative locations of shear lips in the cracks allowed deduction of which crack happened first, and which direction the cracks propagated.
Image
in Inspection and Analysis of Aluminium Racks in Spent Fuel Storage Basins
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Image
in Inspection and Analysis of Aluminium Racks in Spent Fuel Storage Basins
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Book Chapter
Cracked Disks of Fan Made of Heat Resistant Steel
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001225
EISBN: 978-1-62708-232-7
... rotating at 1750 rpm. Two disks were cracked at the inner face of the sheet metal rim while the rim of the third was completely cracked through. An analysis of the sheet metal rim of one of the disks showed the following composition: 0.06C, 1.98Si, 25.8Cr, and 35.8Ni. A steel of such high chromium content...
Abstract
Three radially-cracked disks that circulated the protective gases in a bell-type annealing furnace were examined. During service they had been heated in cycles of 48 h to 720 deg C for 3 h each time, then were kept at temperature for 15 h followed by cooling to 40 deg C in 30 h, while rotating at 1750 rpm. Two disks were cracked at the inner face of the sheet metal rim while the rim of the third was completely cracked through. An analysis of the sheet metal rim of one of the disks showed the following composition: 0.06C, 1.98Si, 25.8Cr, and 35.8Ni. A steel of such high chromium content was susceptible to s-phase formation when annealed under 800 deg C. The material selected was therefore unsuitable for the stress to be anticipated. In view of the required oxidation resistance, a chromium-silicon or chromium-aluminum steel with 6 or 13% Cr would have been adequate. If the high temperature strength of these steels proved inadequate, an alloy lower in chromium would have been preferable.
Book Chapter
Failure of a Seat on a School Playground Swing Set
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001130
EISBN: 978-1-62708-214-3
... Abstract The failure during use of a seat on a heavy-duty swing set at an elementary school was investigated. The seat contained a perforated reinforcing sheet metal (galvanized type 430 stainless steel) insert covered by an elastomeric material. Specimens of the reinforcing sheet from...
Abstract
The failure during use of a seat on a heavy-duty swing set at an elementary school was investigated. The seat contained a perforated reinforcing sheet metal (galvanized type 430 stainless steel) insert covered by an elastomeric material. Specimens of the reinforcing sheet from the failed seat were examined using SEM fractography, tensile and ductility tests, and spectrographic chemical analysis. The test results showed that the steel used did not meet the manufacturer's specifications for ductility (elongation). In addition, the small-diameter punched holes caused a stress concentration factor that aggravated the brittleness of the steel.
Book Chapter
Fractured Post of a Loading Gear
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001210
EISBN: 978-1-62708-227-3
... Abstract In a shipyard one of the two posts of a loading gear fractured under a comparatively small load at the point where it was welded into the ship’s deck. The post consisted of several pipe lengths that were produced by longitudinal seam welding of 27 mm thick sheets. The sheet metal...
Abstract
In a shipyard one of the two posts of a loading gear fractured under a comparatively small load at the point where it was welded into the ship’s deck. The post consisted of several pipe lengths that were produced by longitudinal seam welding of 27 mm thick sheets. The sheet metal was a construction steel of 60 to 75 kp/sq mm strength. Thick-walled parts of steels of such high strength must be preheated to approximately 200 deg C along the edges prior to welding to minimize the strong heat losses by the cold mass of the part. In the case under investigation this either was not done at all or the preheating was not high enough or sufficiently uniform. This damage was therefore caused by a welding defect.
Book Chapter
Failures Related to Metalworking
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
.... The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts. anisotropy blisters centerline shrinkage chemical segregation cold...
Abstract
This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs. The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts.
Book Chapter
Fracture of a Cross on a Church Steeple
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001205
EISBN: 978-1-62708-219-8
... at the point of highest stress, but approximately 200 mm above it. A bell-shaped sheet metal cap was welded onto the shaft at this point. The tubing had fractured about 10 mm under this weld seam. The steel of the shaft tubing contained only 0.033P and 0.004N, and thus was not considered prone to brittle...
Abstract
A cross crowned by a gilded cock on a church steeple hung in a slanted position from its support after a stormy night. Fracture had occurred on the shaft of the cross which was formed by a seamless steel tubing of 60 mm OD and 2.7 mm wall thickness. The fracture had not occurred at the point of highest stress, but approximately 200 mm above it. A bell-shaped sheet metal cap was welded onto the shaft at this point. The tubing had fractured about 10 mm under this weld seam. The steel of the shaft tubing contained only 0.033P and 0.004N, and thus was not considered prone to brittle fracture or unsuitable for welded structures. Investigation showed the design of the cross was an unfortunate mistake. If the bell-shaped cap was really essential it should have been fastened by means other than welding. Furthermore, the welding was done poorly after an initial aborted attempt. This was the primary cause of fracture.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006801
EISBN: 978-1-62708-329-4
... metal, and springback/dimensional. It discusses the processes involved in analytical tools that aid in characterizing the state of a formed part. In addition, information on draw panel analysis and troubleshooting of sheet forming failures is also provided. draw panel analysis fractures necks...
Abstract
Sheet forming failures divert resources from normal business activities and have significant bottom-line impact. This article focuses on the formation, causes, and limitations of four primary categories of sheet forming failures, namely necks, fractures/splits/cracks, wrinkles/loose metal, and springback/dimensional. It discusses the processes involved in analytical tools that aid in characterizing the state of a formed part. In addition, information on draw panel analysis and troubleshooting of sheet forming failures is also provided.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0046079
EISBN: 978-1-62708-233-4
... the highest temperature in service. A 400x etched micrograph showed a brittle and somewhat porous metallic layer about 0.025 mm (0.001 in.) thick on both surfaces of the sheet. Next to this was an apparently single-phase region nearly 0.05 mm (0.002 in.) in thickness. The examination supported the conclusion...
Abstract
After only a short time in service, oil-fired orchard heaters made of galvanized low-carbon steel pipe, 0.5 mm (0.020 in.) in thickness, became sensitive to impact, particularly during handling and storage. Most failures occurred in an area of the heater shell that normally reached the highest temperature in service. A 400x etched micrograph showed a brittle and somewhat porous metallic layer about 0.025 mm (0.001 in.) thick on both surfaces of the sheet. Next to this was an apparently single-phase region nearly 0.05 mm (0.002 in.) in thickness. The examination supported the conclusion that prolonged heating of the galvanized steel heater shells caused the zinc-rich surface to become alloyed with iron and reduce the number of layers. Also, heating caused zinc to diffuse along grain boundaries toward the center of the sheet. Zinc in the grain boundaries reacted with iron to form the brittle intergranular phase, resulting in failure by brittle fracture at low impact loads during handling and storage. Recommendation included manufacture of the pipe with aluminized instead of galvanized steel sheet for the combustion chamber.
Book Chapter
Grain Disintegration in a Welded Sheet Construction
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001223
EISBN: 978-1-62708-233-4
... Abstract The corner of a welded sheet construction made from austenitic corrosion-resistant chromium-nickel steel showed corrosive attack of the outer sheet. This attack was most severe at the points subjected to the greatest heat during welding. Particularly large amounts of weld metal had...
Abstract
The corner of a welded sheet construction made from austenitic corrosion-resistant chromium-nickel steel showed corrosive attack of the outer sheet. This attack was most severe at the points subjected to the greatest heat during welding. Particularly large amounts of weld metal had been applied. Microscopic examination showed grain disintegration was promoted by the thickness of the weld bead and the amount of heat required to produce it. If nonstabilized austenitic sheet is to be used in the future, one of the particularly low-carbon steels, X2 CrNi 18 9 or X2 CrNiMo 18 10, is recommended.
Book Chapter
Aircraft Accident Caused by Explosive Sabotage
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001290
EISBN: 978-1-62708-215-0
... considerable impact damage. However, the damage to the toilet area, cockpit, and the surrounding structures and fittings therein were of an entirely different nature and could not have been caused by impact on landing. Features on fragments of sheet metals disintegrated by explosive forces are distinct...
Abstract
Damage to a passenger aircraft that resulted from a midair explosion and subsequent emergency landing was investigated to determine the cause and location of the explosion. Extensive damage had occurred in the front toilet and cockpit areas and to the undercarriage and underside of the aircraft. Fractographic and surface examination of metal fragments (stainless steel and aluminum alloy) from damaged areas indicated that the accident was caused by an explosion in the front toilet. A reconstruction exercise confirmed this conclusion. Damage to the undercarriage and underside resulted from the emergency landing.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006791
EISBN: 978-1-62708-295-2
..., roughening and creations of protrusion rising above the original surface. It often includes material transfer, or plastic flow, or both.” Thus, the wear in metal forming, being also the dominant cause of tool failure ( Ref 51 ) (especially in deep drawing, fine blanking, and sheet metal forming), is often...
Abstract
Friction and wear are important when considering the operation and efficiency of components and mechanical systems. Among the different types and mechanisms of wear, adhesive wear is very serious. Adhesion results in a high coefficient of friction as well as in serious damage to the contacting surfaces. In extreme cases, it may lead to complete prevention of sliding; as such, adhesive wear represents one of the fundamental causes of failure for most metal sliding contacts, accounting for approximately 70% of typical component failures. This article discusses the mechanism and failure modes of adhesive wear including scoring, scuffing, seizure, and galling, and describes the processes involved in classic laboratory-type and standardized tests for the evaluation of adhesive wear. It includes information on standardized galling tests, twist compression, slider-on-flat-surface, load-scanning, and scratch tests. After a discussion on gear scuffing, information on the material-dependent adhesive wear and factors preventing adhesive wear is provided.
Book Chapter
Inspection and Analysis of Aluminium Racks in Spent Fuel Storage Basins
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001710
EISBN: 978-1-62708-229-7
... using a TIG process. Much of the sheet metal structure was about 3.2 mm (0.125 in.) thick with the extruded bar load carrying members slightly thicker. The frame structure was not designed to withstand heavy loads from lifting and twisting with many 75–100 mm (3–4 in.) skip welds used in the fabrication...
Abstract
Aluminum-clad spent nuclear fuel is stored in water filled basins at the Savannah River Site awaiting processing or other disposition. After more than 35 years of service underwater, the aluminum storage racks that position the fuel bundles in the basin were replaced. During the removal of the racks from the basin, a failure occurred in one of the racks and the Savannah River Technology Center was asked to investigate. This paper presents the results of the failure analysis and provides a discussion of the effects of corrosion on the structural integrity of the storage racks.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001216
EISBN: 978-1-62708-217-4
... of the sheet as a result of play between the stamping cylinder and the anvil head (ringed dimple). Frequently, overlapping of several defects occurs, especially with steel or titanium sheet, with the result that it is difficult to identify the defects. Dimpling Sheet metal Stamping AlZnMgCu 1.5...
Abstract
Countersunk riveted joints in aluminum sheet are widely employed in the aircraft industry. The preparation of the sheet for the riveting process consists either of countersinking where the sheet is sufficiently thick or of dimpling. Metallographic assessment of dimple defects is described in specimens made of clad aluminum sheet of alloy type AlZnMgCu1.5. Addressed are a dimple with partially missing stamped surface (bell-mouth), a cylindrical prominence because the dimpling force was too great and the stamping cylinder force too low, and a dimple with flashes at the top surfaces of the sheet as a result of play between the stamping cylinder and the anvil head (ringed dimple). Frequently, overlapping of several defects occurs, especially with steel or titanium sheet, with the result that it is difficult to identify the defects.
Book Chapter
Failure of Nickel-Base Superalloy Heat-Exchanger Tubes in a Black Liquor Heater
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001311
EISBN: 978-1-62708-215-0
... in the base metal immediately adjacent to the weld seam. The corrosion was attributed to exposure to nitric acid cleaning solution and was accelerated by galvanic differences between the tubes and a stainless steel tube sheet and between the base metal of the tubes and their dendritic weld seams. A change...
Abstract
Several nickel-base superalloy (UNS N06600) welded heat-exchanger tubes used in processing black liquor in a kraft paper mill failed prematurely. Leaking occurred through the tube walls at levels near the bottom tube sheet. The tubes had been installed as replacements for type 304 stainless steel tubes. Visual and stereoscopic examination revealed three types of corrosion on the inside surfaces of the tubes: uniform attack, deeper localized corrosive attack, and accelerated uniform attack. Metallographic analysis indicated that pronounced dissimilar-metal corrosion had occurred in the base metal immediately adjacent to the weld seam. The corrosion was attributed to exposure to nitric acid cleaning solution and was accelerated by galvanic differences between the tubes and a stainless steel tube sheet and between the base metal of the tubes and their dendritic weld seams. A change to type 304 stainless steel tubing made without dendritic weld seams was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001514
EISBN: 978-1-62708-218-1
... flange. The darker and small grained microstructure is that of the original condition of the sheet metal. The lighter colored regions showing grain refining and coarse grain structure, constitute a heat affected zone. This microstructure is a consequence of thermal annealing. There is no microstructural...
Abstract
A front-wheel drive hatchback automobile was involved in a severe front end impact. Failure analysis of the automobile revealed only a single sound spot weld in each of two 66 cm (26 in.) sections of both upper and lower floor sill flanges. Consequently, upon impact, the floor pan separated from the rocker panel, buckled and rotated upward and forward. This introduced slack in the seat belts since their retractors, being anchored to the floor pan, also rotated forward. Although not contributory to the accident itself, the faulty welds were responsible in part for the severity of the injuries sustained by the driver. The faulty welds in the unit body were apparently a consequence of improper settings of parameters on a multihead electrical resistance spot welding machine. Lack of appreciation of the hazard associated with failure of this weldment may have contributed to the low frequency of their physical inspection during production. A similar case involving faulty welds in a fuel delivery truck is also discussed.
Book Chapter
Cracking in Carbon-Molybdenum Desulfurizer Welds
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048835
EISBN: 978-1-62708-220-4
... during examination of a naphtha desulfurizer by ultrasonic shear wave techniques. Defect indications were found in longitudinal and circumferential seam welds of the ASTM A204, grade A, steel sheet. The vessel was found to have a type 405 stainless steel liner for corrosion protection that was spot...
Abstract
Welds in two CMo steel catalytic gas-oil desulfurizer reactors cracked under hydrogen pressure-temperature conditions that would not have been predicted by the June 1977 revision of the Nelson Curve for that material. Evidence of severe cracking was found in five weld-joint areas during examination of a naphtha desulfurizer by ultrasonic shear wave techniques. Defect indications were found in longitudinal and circumferential seam welds of the ASTM A204, grade A, steel sheet. The vessel was found to have a type 405 stainless steel liner for corrosion protection that was spot welded to the base metal and all vessel welds were found to be overlaid with type 309 stainless steel. Long longitudinal cracks in the weld metal, as well as transverse cracks were exposed after the weld overlay was ground off. A decarburized region on either side of the crack was revealed by metallurgical examination of a cross section of a longitudinal crack. It was concluded that the damage was caused by a form of hydrogen attack. Installation of a used Cr-Mo steel vessel with a type 347 stainless steel weld overlay was suggested as a corrective action.
Book Chapter
Catastrophic Failure of a Fan in a Diesel Engine Cooler
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001612
EISBN: 978-1-62708-218-1
...: (a) non-metallic inclusions at the fracture origin, (b) multiple fracture origins near the origin The weld nugget connecting the two sheets peeled and separated with minimal plastic deformation. The absence of large-scale deformation at the weld nugget indicated that the surfaces were not properly...
Abstract
The fan used to cool a diesel engine fractured catastrophically after approximately 100 h of operation. The fan failed at a spider, which was resistance spot welded to a shim placed between two circular spiders of 3 mm thickness. The detailed analysis of the fracture indicated that the premature failure of the fan was due to inadequate bonding between the sheets at the weld nugget. The fracture was initiated from the nugget-plate interface. The inadequate penetration and lack of fusion between the steel sheets during resistance spot welding led to poor weld strength and the fracture during operation. The propensity to crack initiation and failure was accentuated by improper cleaning of the surfaces prior to welding and to inadequate nugget-to-sheet edge distance.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089738
EISBN: 978-1-62708-235-8
..., throughout much of the collar circumference, penetrated the original tube-to-duct weld (weld 1), but in the area of the fracture, there was a gap between the two sheets of stainless steel, and the third weld was separate (weld 3). Examination of the underside of the joint showed incomplete fusion...
Abstract
While undergoing vibration testing, a type 347 stainless steel inlet header for a fuel-to-air heat exchanger cracked in the header tube adjacent to the weld bead between the tube and header duct. Investigation (visual inspection and liquid penetrant inspection) supported the conclusion that the crack in the header tube was the result of a stress concentration at the toe of the weld joining a doubler collar to the tube. The stress concentration was caused by undercutting from poor welding technique and an unfavorable joint design that did not permit a good fit-up. Recommendations included manufacturing the doubler collar so that it could be placed in intimate contact with the header duct, and a revised weld procedure was recommended to result in a smaller, controlled, homogeneous weld joint with less distortion.
1