Skip Nav Destination
Close Modal
Search Results for
Sensitization
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 366 Search Results for
Sensitization
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046476
EISBN: 978-1-62708-234-1
... than 0.03% carbon had been sensitized and placed in contact in service with a corrosive medium at temperatures in the sensitizing range. Recommendations included changing material for the pot from type 304 stainless steel to Hastelloy N (70Ni-17Mo-7Cr-5Fe). Maximum corrosion resistance and ductility...
Abstract
A fused-salt electrolytic-cell pot containing a molten eutectic mixture of sodium, potassium, and lithium chlorides and operating at melt temperatures from 500 to 650 deg C (930 to 1200 deg F) exhibited excessive corrosion after two months of service. The pot was a welded cylinder with 3-mm thick type 304 stainless steel walls and was about 305 mm (12 in.) in height and diam. Analysis (visual inspection and 500x micrographs etched with CuCl2) supported the conclusions that the pot failed by intergranular corrosion because an unstabilized austenitic stainless steel containing more than 0.03% carbon had been sensitized and placed in contact in service with a corrosive medium at temperatures in the sensitizing range. Recommendations included changing material for the pot from type 304 stainless steel to Hastelloy N (70Ni-17Mo-7Cr-5Fe). Maximum corrosion resistance and ductility are developed in Hastelloy N when the alloy is solution heat treated at 1120 deg C (2050 deg F) and is either quenched in water or rapidly cooled in air. An alternative, but less suitable, material for the pot was type 347 (stabilized grade) stainless steel. After welding, the 347 should be stress relieved at 900 deg C (1650 deg F) for 2 h and rapidly cooled to minimize residual stresses.
Image
Published: 01 January 2002
Fig. 27 Cracking in a 5083 aluminum alloy ship hull caused by sensitization. Courtesy of MDE Engineers, Inc.
More
Image
in Problems Associated with Heat Treated Parts
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 24 Sensitization of austenitic stainless steel. (a) Normal distribution of carbides. Original magnification: 100×. (b) Sensitized as carbides precipitated in grain boundaries on cooling from 1040 °C (1900 °F)
More
Image
in Intergranular Corrosion of an Aluminum Alloy Ship Hull
> ASM Failure Analysis Case Histories: Offshore, Shipbuilding, and Marine Equipment
Published: 01 June 2019
Fig. 1 Cracking in a 5083 aluminum alloy ship hull caused by sensitization. Courtesy of MDE Engineers, Inc.
More
Image
Published: 15 January 2021
Fig. 27 Cracking in a 5083 aluminum alloy ship hull caused by sensitization. Courtesy of MDE Engineers, Inc.
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091640
EISBN: 978-1-62708-229-7
.... Electric power generation Sensitization Steam Valve stem 17-4 PH UNS S17400 Stress-corrosion cracking Heat treating-related failures A 9 cm (3.5 in.) diameter valve stem made of 17-4 PH (AISI type 630) stainless steel, which was used for operating a 61 cm (24 in.) gate valve in a steam power...
Abstract
A valve stem made of 17-4 PH (AISI type 630) stainless steel, which was used for operating a gate valve in a steam power plant, failed after approximately four months of service, during which it had been exposed to high-purity water at approximately 175 deg C (350 deg F) and 11 MPa (1600 psi). The valve stem was reported to have been solution heat treated at 1040 +/-14 deg C (1900 +/-25 deg F) for 30 min and either air quenched or oil quenched to room temperature. The stem was then reportedly aged at 550 to 595 deg C (1025 to 1100 deg F) for four hours. Investigation (visual inspection, 0.7x/50x images, hardness testing, reheat treatment, and metallographic examination) supported the conclusion that failure was by progressive SCC that originated at a stress concentration. Also, the solution heat treatment had been either omitted or performed at too high of a temperature, and the aging treatment had been at too low of a temperature. Recommendations included the following heat treatments: after forging, solution heat treat at 1040 deg C (1900 deg F) for one hour, then oil quench; to avoid susceptibility to SCC, age at 595 deg C (1100 deg F) for four hours, then air cool.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047598
EISBN: 978-1-62708-217-4
... surfaces confined to the HAZs of the welds. Microscopic examination of sections transverse to the weld cracks showed severe intergranular corrosion in the HAZ. The fractures appeared to be caused by loss of corrosion resistance due to sensitization, that could have been induced by the temperatures attained...
Abstract
Two aircraft-engine tailpipes of 19-9 DL stainless steel (AISI type 651) developed cracks along longitudinal gas tungsten arc butt welds after being in service for more than 1000 h. Binocular-microscope examination of the cracks in both tailpipes revealed granular, brittle-appearing surfaces confined to the HAZs of the welds. Microscopic examination of sections transverse to the weld cracks showed severe intergranular corrosion in the HAZ. The fractures appeared to be caused by loss of corrosion resistance due to sensitization, that could have been induced by the temperatures attained during gas tungsten arc welding. Tests demonstrated the presence of sensitization in the HAZ of the gas tungsten arc weld. The aircraft engine tailpipe failures were due to intergranular corrosion in service of the sensitized structure of the HAZs produced during gas tungsten arc welding. All gas tungsten arc welded tailpipes should be postweld annealed by re-solution treatment to redissolve all particles of carbide in the HAZ. Also, it was suggested that resistance seam welding be used, because there would be no corrosion problem with the faster cooling rate characteristic of this technique.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048400
EISBN: 978-1-62708-226-6
... not to be in compliance with standards (type 304 stainless steel without molybdenum). The screws and washers were found to be made of remelted implant-quality type 316L stainless steel and were intact. Signs of sensitization, characterized by chromium carbide precipitates at the grain boundaries, were revealed...
Abstract
Cerclage wire, which was used with two screws and washers for a tension band in a corrective internal fixation, was found broken at several points and corroded after nine months in service. The material was examined using energy-dispersive x-ray analysis and determined not to be in compliance with standards (type 304 stainless steel without molybdenum). The screws and washers were found to be made of remelted implant-quality type 316L stainless steel and were intact. Signs of sensitization, characterized by chromium carbide precipitates at the grain boundaries, were revealed by the microstructure. Intercrystalline corrosion with pitted grains was indicated by SEM fractography. Improper heat treatment of the steel was interpreted to have led to intercrystalline corrosion and implant separation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089459
EISBN: 978-1-62708-235-8
... and propagated by fatigue during continued exposure of the rods to severe cyclic loads in service. The loads on the rods developed tensile and bending stresses in the connecting ends. Contributory factors were: The presence of a notch-sensitive banded structure containing alternately soft (ferrite...
Abstract
The connecting end of two forged medium-carbon steel rods used in an application in which they were subjected to severe low-frequency loading failed in service. The fractures extended completely through the connecting end. The surface hardness of the rods was found to be lower than specifications. The fractures were revealed to be in areas of the transition regions that had been rough ground to remove flash along the parting line. The presence of beach marks, indicating fatigue failure, was revealed by examination. The fracture origin was confirmed by the location and curvature of beach marks to be the rough ground surface. An incipient crack 9.5 mm along with several other cracks on one of the fractured rods was revealed by liquid penetration examination. Metallographic examination of the fractured rods indicated a banded structure consisting of zones of ferrite and pearlite. It was established that the incipient cracks found in liquid-penetrant inspection had originated at the surface in the banded region, in areas of ferrite where this constituent had been visibly deformed by grinding. Closer control on the microstructure, hardness of the forgings and smooth finish in critical area was recommended.
Image
Published: 01 January 2002
Fig. 28 Microstructure of 5083 aluminum alloy ship hull that has been sensitized. Courtesy of MDE Engineers, Inc.
More
Image
Published: 01 January 2002
Fig. 29 Scanning electron micrograph of sensitized 5083 aluminum microstructure shown in Fig. 28 . Courtesy of MDE Engineers, Inc.
More
Image
Published: 01 January 2002
Fig. 32 Sensitized 304 stainless steel exhibiting intergranular attack. 100×
More
Image
Published: 01 January 2002
Fig. 4 Notch sensitivity versus notch radius for various metals. Approximate values (note shaded band). Not verified for deep notches thickness/radius. Source: Ref 9
More
Image
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 39 Temperature dependence of the strain-rate sensitivity of pure aluminum and alloy 2024. Note 2024-O becoming negative near room temperature. Source: Ref 63
More
Image
in Stress-Corrosion Cracking of a Swaged Stainless Steel Reheater Pendent Tube
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 4 Slightly sensitized microstructure of the unswaged section of the tube, consisting of austenite grains with carbides along the grain boundaries. Oxalic acid electrolytic etch. Top, 62×. Bottom, 496×
More
Image
in Problems Associated with Heat Treated Parts
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 25 Field failure of burner fan impeller due to sensitizing of type 302 austenitic stainless steel near weld zone
More
Image
in Manufacturing-Related Failures of Plastic Parts
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 10 Stress optical sensitivity examination of part with high molecular orientation
More
Image
in Physical, Chemical, and Thermal Analysis of Thermoplastic Resins
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 12 Sensitivity of solution versus melt rheometry to molecular weight
More
Image
Published: 15 May 2022
Fig. 21 Temperature sweeps on a pressure-sensitive adhesive at various frequencies
More
1