Skip Nav Destination
Close Modal
By
Cassio Barbosa, Ibrahim de Cerqueira Abud, Tatiana Silva Barros, Sheyla Santana de Carvalho, Ieda Maria Vieira Caminha
Search Results for
Screws
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 276 Search Results for
Screws
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0048592
EISBN: 978-1-62708-218-1
... of four bearing caps, two cap screws, and one universal-joint spider had fractured. Examination of the three fractured bearing caps and the spider showed no evidence of fatigue but showed that fracture occurred in a brittle manner. The bearing cap that was not destroyed still contained portions of the two...
Abstract
A drive-line assembly failed during vehicle testing. The vehicle had traveled 9022 km (5606 mi) before the failure occurred. Both the intact and fractured parts of the assembly were analyzed to determine the cause and sequence of failure. Visual examination of the assembly showed three of four bearing caps, two cap screws, and one universal-joint spider had fractured. Examination of the three fractured bearing caps and the spider showed no evidence of fatigue but showed that fracture occurred in a brittle manner. The bearing cap that was not destroyed still contained portions of the two fractured cap screws. It was found that the two cap screws failed in fatigue under service stresses. The three bearing caps and the universal-joint spider broke in a brittle manner. The properties of the material in the cap screws did not fulfill the specifications. The modified 1035 steel was of insufficient alloy content. Also, the tensile strength and endurance limit were lower than specified and were inadequate for the application. The material for the cap screw was changed from modified 1035 steel to 5140 steel.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0090929
EISBN: 978-1-62708-236-5
... Abstract Size M5 x 0.8 mm, class 8.8 metric screws were failing during application, reportedly at the normal installation torque. Investigation (visual inspection, metallographic analysis, and unetched 8.9x fractographs) supported the conclusion that the fasteners failed via ductile overload...
Abstract
Size M5 x 0.8 mm, class 8.8 metric screws were failing during application, reportedly at the normal installation torque. Investigation (visual inspection, metallographic analysis, and unetched 8.9x fractographs) supported the conclusion that the fasteners failed via ductile overload in the absence of gross defects or embrittlement. It was subsequently determined that a nonapproved lubricant had been used during installation. Tension preloads can be more than twice their normal level on lubricated fasteners because of reduced friction, and in this case, the preload was sufficient to fracture the screws. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001178
EISBN: 978-1-62708-235-8
... Abstract Eight cylinderhead screws cracked after a short running time in motors. They were made of Fe-0.45C-1Cr steel, had rolled threads, were heat treated to 110 kg/sq mm tensile strength, and were electrolytically galvanized. All fractured at the root of the thread. The surfaces of fracture...
Abstract
Eight cylinderhead screws cracked after a short running time in motors. They were made of Fe-0.45C-1Cr steel, had rolled threads, were heat treated to 110 kg/sq mm tensile strength, and were electrolytically galvanized. All fractured at the root of the thread. The surfaces of fracture were fine-grained and had not spread by rubbing. Because the screws were electrolytically galvanized, failure resulted from “delayed fracture.” Experience has shown that this type of fracture is seen on production parts made of high-strength steels, which absorbed hydrogen during pickling or during a galvanic surface treatment. Such parts will rupture below the elastic limit during continuous stressing. This often occurs only after the expiration of a certain time period, and preferably at locations of stress concentrations such as changes in cross section or threads. As a rule, the hydrogen cannot be verified analytically because most of it escapes again after prolonged storage at room temperature or short heating at 100 to 200 deg C.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091036
EISBN: 978-1-62708-227-3
... Abstract Socket head cap screws used in a naval application were failing in service due to delayed fracture. The standard ASTM A 574 screws were zinc plated and dichromate coated. Investigation (visual inspection, 1187 SEM images, chemical analysis, and tension testing) of both the failed...
Abstract
Socket head cap screws used in a naval application were failing in service due to delayed fracture. The standard ASTM A 574 screws were zinc plated and dichromate coated. Investigation (visual inspection, 1187 SEM images, chemical analysis, and tension testing) of both the failed screws and two unused, exemplar fasteners from the same lot supported the conclusion that the cap screws appear to have failed due to hydrogen embrittlement, as revealed by delayed cracking and intergranular fracture morphology. Static brittle overload fracture occurred due to the tension preload, and prior hydrogen charging that occurred during manufacturing. The probable source of charging was the electroplating, although postplating baking was reportedly performed as well. Recommendations included examining the manufacturing process in detail.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001094
EISBN: 978-1-62708-214-3
... Abstract Cadmium-coated type 410 martensitic stainless steel 1 4 -14 self-drilling tapping screws fractured during retorquing tests within a few weeks after installation. The screws were used to assemble structural steel frames for granite panels that formed the outer skin of a high...
Abstract
Cadmium-coated type 410 martensitic stainless steel 1 4 -14 self-drilling tapping screws fractured during retorquing tests within a few weeks after installation. The screws were used to assemble structural steel frames for granite panels that formed the outer skin of a high-rise building. Fractographic and metallographic examination showed that the fractures occurred in a brittle manner from intergranular crack propagation. Laboratory and simulated environmental tests showed that an aqueous environment was necessary for the brittle fracture/cracking phenomenon. The cracks were singular and intergranular with little branching. Secondary subsurface cracks suggested possible hydrogen embrittlement. The 410 screws had been introduced to replace conventional case-hardened carbon steel screws that conform to SAE specification J78. Carbon steel screws had a proven record of acceptable performance for the intended application. It was recommended that use of the 410 screws be discontinued in preference to the case-hardened carbon steel screws.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001097
EISBN: 978-1-62708-214-3
... Abstract Two type 316L stainless steel orthopedic screws broke approximately 6 weeks after surgical implant. The screws had been used to fasten a seven-hole narrow dynamic compression plate to a patient's spine. The broken screws and screws of the same vintage and source were examined using...
Abstract
Two type 316L stainless steel orthopedic screws broke approximately 6 weeks after surgical implant. The screws had been used to fasten a seven-hole narrow dynamic compression plate to a patient's spine. The broken screws and screws of the same vintage and source were examined using macrofractography, SEM fractography, and hardness testing. Fractography established that fracture was by fatigue and that the fatigue cracking originated at corrosion pits. Hardness while below specification, still indicated that the screws were in the cold-worked condition and notch sensitive during fatigue loading. Use of a steel with a higher molybdenum content (317L) in the annealed condition was recommended.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001098
EISBN: 978-1-62708-214-3
... Abstract Six ASTM A-574 steel cap screws from a hydraulic coupling failed after 3 months in service. The screws were replacements for smaller-diameter cap screws that had been installed during an outage. Six new cap screws were examined along with the failed screws. Eight fracture locations...
Abstract
Six ASTM A-574 steel cap screws from a hydraulic coupling failed after 3 months in service. The screws were replacements for smaller-diameter cap screws that had been installed during an outage. Six new cap screws were examined along with the failed screws. Eight fracture locations were identified—three at the head-to-shank fillet, four at the eighth thread root from the cap, and one at the sixth thread root from the cap. Fracture surfaces were examined using a stereomicroscope and SEM, and the fracture mode was shown to be transgranular. EDS on the fracture surfaces showed sulfur and chlorine in the surface deposits. The observations indicated that the screws had failed by fatigue. Insufficient preloading was considered to be the most likely cause of the fatigue cracking. It was recommended that the proper preload on the screws be verified and maintained.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001099
EISBN: 978-1-62708-214-3
... Abstract Uncoated high-strength alloy steel cap screws retaining a cast aluminum (356.0) diffuser assembly in a centrifugal refrigerant compressor failed in a brittle manner a short time after the system was placed in operation. Evidence obtained during the failure analysis indicated...
Abstract
Uncoated high-strength alloy steel cap screws retaining a cast aluminum (356.0) diffuser assembly in a centrifugal refrigerant compressor failed in a brittle manner a short time after the system was placed in operation. Evidence obtained during the failure analysis indicated that the failures were the result of hydrogen embrittlement produced by galvanic corrosion and attendant evolution of hydrogen at the dissimilar junction, which was also the site of the highest tensile stress. Suggested measures for minimizing recurrences included use of lower-strength, galvanically-compatible fasteners and appropriately-applied and treated compatible coatings.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001101
EISBN: 978-1-62708-214-3
... Abstract Several cadmium-plated carbon steel socket head cap screws that were part of a slide valve assembly on a regenerator line in a petrochemical plant failed during initial loading. Metallographic and XDS chemical analysis in conjunction with SEM examination of one failed and one unfailed...
Abstract
Several cadmium-plated carbon steel socket head cap screws that were part of a slide valve assembly on a regenerator line in a petrochemical plant failed during initial loading. Metallographic and XDS chemical analysis in conjunction with SEM examination of one failed and one unfailed cap screw indicated that the screws had failed by hydrogen embrittlement. The plating process was the likely source of the hydrogen. It was recommended that the remainder of the cap screws from the same lot as the failed screws be baked at approximately 190 deg C (375 deg F) for 24 h.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048405
EISBN: 978-1-62708-226-6
... Abstract Type 316LR stainless steel screws that failed by fatigue were studied. It was found that fatigue fracture can occur on different thread levels, depending on the loading situation. The initiation of secondary fatigue cracks was occasionally found parallel to the fracture plane...
Abstract
Type 316LR stainless steel screws that failed by fatigue were studied. It was found that fatigue fracture can occur on different thread levels, depending on the loading situation. The initiation of secondary fatigue cracks was occasionally found parallel to the fracture plane. The screws were used with a relatively rigid plate to treat a fracture complication in the upper end of the femur. The fatigue failures were explained by signs of unstable fixation revealed by radiographs.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001804
EISBN: 978-1-62708-241-9
... Abstract A stainless steel screw securing an orthopedic implant fractured and was analyzed to determine the cause. Investigators used optical and scanning electron microscopy to examine the fracture surfaces and the microstructure of the austenitic stainless steel from which the screw was made...
Abstract
A stainless steel screw securing an orthopedic implant fractured and was analyzed to determine the cause. Investigators used optical and scanning electron microscopy to examine the fracture surfaces and the microstructure of the austenitic stainless steel from which the screw was made. The results of the study indicated that the screw failed due to fatigue fracture stemming from surface cracks generated by stress concentration likely caused by grooves left by improper machining.
Image
Published: 01 January 2002
Fig. 32 Delayed fracture of cap screws ( example 14 ). (a) Cap screws that either cracked or fractured in a delayed manner at the underside of the heads. (b) One screw that cracked 360° around the head without separating. (c) Representative electron image of the primarily intergranular
More
Image
in Hydrogen Embrittlement Failure of Cap Screws
> ASM Failure Analysis Case Histories: Offshore, Shipbuilding, and Marine Equipment
Published: 01 June 2019
Fig. 1 Delayed fracture of cap screws. (a) Cap screws that either cracked or fractured in a delayed manner at the underside of the heads. (b) One screw that cracked 360° around the head without separating. (c) Representative electron image of the primarily intergranular fracture features
More
Image
Published: 15 January 2021
Fig. 34 Delayed fracture of cap screws (Example 20). (a) Cap screws that either cracked or fractured in a delayed manner at the underside of the heads. (b) One screw that cracked 360° around the head without separating. (c) Representative electron image of the primarily intergranular fracture
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001614
EISBN: 978-1-62708-225-9
... Abstract The damage to a screw on the head of a 1.8 liter personal car engine was nucleated as the result of common disadvantageous environmental influences and reversed loads leading to corrosion fatigue. Automotive Screw steel Fatigue fracture Corrosion fatigue The seal coupling...
Abstract
The damage to a screw on the head of a 1.8 liter personal car engine was nucleated as the result of common disadvantageous environmental influences and reversed loads leading to corrosion fatigue.
Image
Published: 01 January 2002
Fig. 14 Type 316LR stainless steel screws that failed by fatigue. (a) Fatigue fractures at different thread levels. (b) Longitudinal section perpendicular to fracture surface without deformation zone at fracture site. A small secondary crack is shown at thread site (arrow). 55×. (c) Fatigue
More
Image
Published: 01 January 2002
Fig. 2 Fracturing of high-strength screws ( example 1 ). (a) Two grade 8 high-strength steel fasteners that failed on installation. (b) Necking and stretching between adjacent thread crests are evident on a cross section. Unetched. 8.9×
More
Image
in Failure Analysis of Medical Devices
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 33 Bend in one of the fractured bone screws
More
Image
in Environmentally-Induced Fracture of Type 410 Martensitic Stainless Steel Self-Drilling Tapping Screws
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 1 Major portion of the fracture was brittle in the type 410 screws. Bright, lower left area was shear fracture from torsional overload during retorquing.
More
Image
in Fatigue Fracture of 316L Stainless Steel Screws Employed for Surgical Implanting
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 1 Cancellous bone screws and the seven-hole narrow dynamic compression plate.
More
1