Skip Nav Destination
Close Modal
Search Results for
Sand castings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 92 Search Results for
Sand castings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0089551
EISBN: 978-1-62708-218-1
... Abstract A sand-cast medium-carbon steel heavy-duty axle housing, which had been quenched and tempered to about 30 HRC, fractured after almost 5000 h of service. Investigation (0.4x magnification) revealed that the fracture had been initiated by a hot tear that formed during solidification...
Abstract
A sand-cast medium-carbon steel heavy-duty axle housing, which had been quenched and tempered to about 30 HRC, fractured after almost 5000 h of service. Investigation (0.4x magnification) revealed that the fracture had been initiated by a hot tear that formed during solidification of the casting. The mass of a feeder-riser system located near the tear retarded cooling in this region, creating a hot spot. This supported the conclusion that the tear causing the fracture of the axle housing was formed during solidification by hindered contraction and was enlarged in service by fatigue. Recommendations were to change the feeder location to eliminate the hot spot and thus the occurrence of hot tearing.
Image
Published: 01 January 2002
Fig. 4 Sand-cast low-alloy steel eye connector from a floating-bridge pontoon that broke under static tensile loading. (a) Schematic illustration of pontoon bridge and enlarged view of eye and clevis connectors showing location of fracture in eye connector. (b) A fracture surface of the eye
More
Image
Published: 01 January 2002
Fig. 14 Fracture surface of a sand-cast medium-carbon steel heavy-duty axle housing. Failure originated at a hot tear (region A), which propagated in fatigue (region B) until final fracture occurred by overload. 0.4×
More
Image
Published: 01 January 2002
Fig. 20 Highway-truck equalizer beam, sand cast from low-alloy steel, that fractured because of mechanical cracking. (a) Fracture surface; detail A shows increments (regions B, C, D, and E) in which crack propagation occurred sequentially. Dimensions given in inches. (b) Micrograph
More
Image
Published: 01 January 2002
Fig. 40 Stuffing box sand cast from ASTM A 536, grade 60-45-10, ductile iron. (a) Configuration and dimensions (given in inches). (b) Micrograph showing the structure consisting of graphite nodules in a ferritic matrix with remnants of a pearlite network. Etched with nital. 100×
More
Image
Published: 01 January 2002
Fig. 49 Piston for a gun-recoil mechanism, sand cast from ductile iron conforming to MIL-I-11466, grade D7003, that fractured in fatigue because of vermicularity of graphite. (a) and (b) Two different views of the piston showing fractures; A and B indicate orifices (see text). Approximately
More
Image
Published: 01 January 2002
Fig. 54 Reheating-furnace chain link, sand cast from austenitic manganese steel, that failed by brittle fracture, because material was not stable at operating temperatures. (a) Chain link showing location of fracture. Dimensions given in inches. (b) Macrograph of a nital-etched specimen from
More
Image
in Brittle Fracture of a Cast Austenitic Manganese Steel Chain Link
> ASM Failure Analysis Case Histories: Material Handling Equipment
Published: 01 June 2019
Fig. 1 Reheating-furnace chain link, sand cast from austenitic manganese steel, that failed by brittle fracture, because material was not stable at operating temperatures. (a) Chain link showing location of fracture. Dimensions given in inches. (b) Macrograph of a nital-etched specimen from
More
Image
in Brittle Fracture of a Ductile Iron Brake Drum by Thermal-Contraction Overload
> ASM Failure Analysis Case Histories: Material Handling Equipment
Published: 01 June 2019
Fig. 1 Sand-cast ductile iron brake drum from a cable-wound winch that fractured from overload caused by thermal contraction. (a) Schematic of the clutch/brake drum assembly. Dimensions given in inches. (b) Heat checks on the surface of the drum. (c) A fracture surface of the drum showing
More
Image
in Failure of a Gray Iron Pump Bowl Because of Graphitic Corrosion from Exposure to Well Water
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 1 Sand-cast gray iron pump bowl that failed due to graphitic corrosion and erosion. (a) Section through the pump bowl. (b) and (c) Macrographs of sections through the corroded areas in the pump shell and vane, respectively, showing graphitic residue not eroded by the action of water
More
Image
Published: 30 August 2021
Fig. 27 Piston for a gun-recoil mechanism, sand cast from ductile iron conforming to MIL-I-11466, grade D7003, that fractured in fatigue because of vermicularity of graphite. (a) and (b) Two different views of the piston showing fractures; A and B indicate orifices (see text). Original
More
Image
Published: 30 August 2021
Fig. 30 Reheating-furnace chain link, sand cast from austenitic manganese steel, that failed by brittle fracture, because material was not stable at operating temperatures. (a) Chain link showing location of fracture. Dimensions given in inches. (b) Macrograph of a nital-etched specimen from
More
Image
Published: 30 August 2021
Fig. 35 Ultimate tensile strength versus hydrogen porosity for sand cast bars of three aluminum alloys
More
Image
in Fatigue Fracture of a Sand-Cast Steel Axle Housing That Originated at a Hot Tear
> ASM Failure Analysis Case Histories: Automobiles and Trucks
Published: 01 June 2019
Fig. 1 Fracture surface of a sand-cast medium-carbon steel heavy-duty axle housing. Failure originated at a hot tear (region A), which propagated in fatigue (region B) until final fracture occurred by overload. 0.4×
More
Image
in Fracture of Cast Steel Equalizer Beams
> ASM Failure Analysis Case Histories: Automobiles and Trucks
Published: 01 June 2019
Fig. 1 Highway-truck equalizer beam, sand cast from low-alloy steel, that fractured because of mechanical cracking. (a) Fracture surface; detail A shows increments (regions B, C, D, and E) in which crack propagation occurred sequentially. Dimensions given in inches. (b) Micrograph
More
Image
in Brittle Fracture of a Gray Iron Nut Due to Overload Caused by Misalignment in Assembly
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Fig. 1 Sand-cast gray iron flanged nut that failed by brittle fracture. (a) Flanged nut, which was used to adjust a plate-bending roll, and the flange that fractured from the body. Dimensions given in inches. (b) Micrograph of a specimen from the flange showing coarse pearlite matrix, large
More
Image
in Fracture of Ductile-Iron Pistons for a Gun Recoil Mechanism as Affected by Type of Graphite
> ASM Failure Analysis Case Histories: Design Flaws
Published: 01 June 2019
Fig. 1 Piston for a gun-recoil mechanism, sand cast from ductile iron conforming to MIL-I-11466, grade D7003, that fractured in fatigue because of vermicularity of graphite. (a) and (b) Two different views of the piston showing fractures; A and B indicate orifices (see text). Approximately
More
Image
in Tensile Fracture That Originated at Shrinkage Porosity in a Cast Low-Alloy Steel Connector
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
Fig. 1 Sand-cast low-alloy steel eye connector from a floating-bridge pontoon that broke under static tensile loading. (a) Schematic illustration of pontoon bridge and enlarged view of eye and clevis connectors showing location of fracture in eye connector. (b) A fracture surface of the eye
More
Image
in Fatigue Fracture of a Stuffing Box That Originated at the Inner End of a Lubrication Hole
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 1 Stuffing box sand cast from ASTM A 536, grade 60-45-10, ductile iron. (a) Configuration and dimensions (given in inches). (b) Micrograph showing the structure consisting of graphite nodules in a ferritic matrix with remnants of a pearlite network. Etched with nital. 100×
More
Image
in Fracture of Teeth in an Oil-Pump Gear Because Ductility Was Inadequate for Shock Loading in Service
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 1 Sand-cast oil-pump gears. (a) ASTM A536, grade 100-70-03, ductile iron. (b) Class 40 gray iron that fractured because of improper material selection. 0.25×
More
1