Skip Nav Destination
Close Modal
Search Results for
SEM/EDX analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 51 Search Results for
SEM/EDX analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001795
EISBN: 978-1-62708-241-9
... it to uneven or eccentric loading. This explains the preferential nature of the flaking on the outer race and points to an assembly error as the root cause of failure. ball bearing spalling improper installation steel flaking SEM/EDX analysis load distribution AFNOR 100C6 (chromium alloy bearing...
Abstract
A ball bearing in a military jet engine sustained heavy damage and was analyzed to determine the cause. Almost all of the balls and a portion of the outer race were found to be flaking, but there were no signs of damage on the inner race and cage. Tests (chemistry, hardness, and microstructure) indicated that the bearing materials met the specification requirements. However, closer inspection revealed areas of discoloration, or nonuniform contact marks, on the ID surface of the inner ring. The unusual wear pattern suggested that the bearing was not properly mounted, thus subjecting it to uneven or eccentric loading. This explains the preferential nature of the flaking on the outer race and points to an assembly error as the root cause of failure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001848
EISBN: 978-1-62708-241-9
... and macroscopic inspection, metallographic and chemical analysis, SEM imaging, optical profilometry, mechanical property testing, and EDX analysis. The die was made of chromium hot-work tool steel and the forgings were made of CuZn39Pb3 heated to an initial working temperature 700 deg C. The entire surface...
Abstract
A forging die in a 250-ton press producing brass valves began to show signs of fatigue after a few thousand hits. By the time it reached 30,000 hits, the die was badly damaged and was submitted for analysis along with one of the last forgings produced. The investigation included visual and macroscopic inspection, metallographic and chemical analysis, SEM imaging, optical profilometry, mechanical property testing, and EDX analysis. The die was made of chromium hot-work tool steel and the forgings were made of CuZn39Pb3 heated to an initial working temperature 700 deg C. The entire surface of the die was covered with fatigue cracks and many fillets had been plastically deformed. Several other types of damage were also observed, including areas of oxidation, corrosion pits, voids, abrasive wear, die adhesion, and thermal fatigue. Fatigue cracking was the primary cause of failure with significant contributions from the other damage mechanisms.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001126
EISBN: 978-1-62708-214-3
... oxide and covered on the back surfaces with an adherent black polyethylene plastic. Macro fractography, SEM fractography, EDX analysis, and photo elasticimetry were conducted on four of the shattered panels. Small nickel sulfide inclusions were found at the failure origins. Failure of the panels...
Abstract
The spontaneous breakage of tempered glass spandrel panels used to cover concrete wall panels on building facades was investigated. Between January 1988 and August 1990, 19 panel failures were recorded. The tinted panels were coated on their exterior surfaces with a reflective metal oxide and covered on the back surfaces with an adherent black polyethylene plastic. Macro fractography, SEM fractography, EDX analysis, and photo elasticimetry were conducted on four of the shattered panels. Small nickel sulfide inclusions were found at the failure origins. Failure of the panels was attributed to growth of the inclusions, coupled with high residual stresses. Fracture mechanics analysis showed that the residual stresses alone were high enough to cause fracture of the glass, with a flaw of the size observed.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001029
EISBN: 978-1-62708-214-3
...)126×. Fig. 6 SEM micrograph showing a typical brittle overload fracture observed in a failed actuator casting. 315×. Energy-Dispersive X-ray (EDX) Microprobe Analysis The fracture surfaces in the areas where the hot tear defects originated and in the brittle overload areas were...
Abstract
Two investment-cast A356 aluminum alloy actuators used for handles on passenger doors of commercial aircraft fractured during torquing at less than the design load. Visual examination showed that cracking had occurred through a machined side hole. Fractography revealed that the cracks originated in hot tear locations in the castings. Microprobe analysis of fracture surfaces in the hot tear region indicated a much higher silicon-to-aluminum ratio compared with the overload fracture area. No microstructural anomalies related to the failure were found during metallographic examination. It was concluded that the strength of the castings had been compromised by the presence of the casting defects. Modification of the gating system for casting was recommended to eliminate the hot tear zone. It was also suggested that the balance of the castings from the same manufacturing lot be radiographically inspected.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0045918
EISBN: 978-1-62708-235-8
.... EDX analysis showed they consisted of niobium and fluorine. Plastic replicas, prepared by standard TEM techniques, were analyzed with selected-area electron diffraction, showing a pattern match for niobium tetrafluoride. Auger analyses showed electron spectra containing peaks representing carbon...
Abstract
Cracks, with no other damage, were observed in a niobium alloy (Nb-106) part when it was pulled from several months of protective storage for assembly into a rocket nozzle. SEM views showed the cracks to be intergranular, with contaminant particles on a large number of the grain facets. EDX analysis showed they consisted of niobium and fluorine. Plastic replicas, prepared by standard TEM techniques, were analyzed with selected-area electron diffraction, showing a pattern match for niobium tetrafluoride. Auger analyses showed electron spectra containing peaks representing carbon, oxygen, nitrogen, fluorine, and chlorine. Investigation into the processing history of the part showed the tenacious oxide film formed by the affinity of niobium for oxygen - even when heat treated in a vacuum – was removed with a combination of strong acids: nitric, hydrochloric, hydrofluoric, and lactic, resulting in the contaminants found on the surface. Thus, residues of the cleaning acid on the part had caused SCC during storage, with the tensile stresses necessary to generate SCC assumed to have been residual stresses from the heat treatment. Recommendation was made that more stringent cleaning procedures to remove any trace of the cleaning acids be used.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001573
EISBN: 978-1-62708-226-6
... located in the uncoated area of the wires. Observations and Results The uncoated area of the wire, is the area where the wire is fixtured in the coating chamber during coating. Examination and analysis of the pits (shown in Figure 1 ) using SEM/EDX detection unit revealed significant peaks of B, O...
Abstract
TiN coated back surgery wires were made of Ti-6Al-4V. The reported failure was the presence of pits located in the uncoated area of the wires. The uncoated area of the wire is where the wire is fixtured in the coating chamber during coating. Examination and analysis of the pits using SEM/EDX detection unit revealed significant peaks of B, O, Zr and Fe. Moreover, the shape of the pits was similar to an arc crater. The formation of pits in the wire was caused during coating due to microarcing. A contaminated fixture used during the coating most likely caused the microarcing.
Image
in Use of EPMA to Identify Microconstituents in a Failed Extrusion Press
> ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment
Published: 01 June 2019
Fig. 3 EPMA analysis of inclusion stringers in failed extrusion press. (a) SEM micrograph of metallographic section near bleed hole. Note large inclusions. 490x. (b) EDX dot map of manganese. (c) EDX dot mop of sulfur
More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001084
EISBN: 978-1-62708-214-3
... the allowable tolerances, while the manganese level is just below. Surface examination Energy-dispersive x-ray (EDX) analysis was performed using the SEM to obtain qualitative compositional information. Analyses were performed on the primary fracture surface, the shroud surface, and the surface...
Abstract
Failure analysis was performed on a fractured impeller from a boiler feed pump of a fossil fuel power plant. The impeller was a 12% Cr martensitic stainless steel casting. The failure occurred near the outside diameter of the shroud in the vicinity of a section change at the shroud/vane junction. Sections cut from the impeller were examined visually and by SEM fractography. Microstructural, chemical, and surface analyses and surface hardness tests were conducted on the impeller segments. The results indicated that the impeller failed in fatigue with casting defects increasing stress and initiating fracture. In addition, the composition and hardness of the impeller did not meet specifications. Revision of the casting process and institution of quality assurance methods were recommended.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001118
EISBN: 978-1-62708-214-3
.... (a) Inclusions. As polished. 315×. (b) Microstructure. 63×. Chemical Analysis/Identification Energy-dispersive X-ray (EDX) analysis of the base metal revealed the typical type 302 stainless steel alloy composition ( Fig. 11 ). Several inclusions were evident in the cross-sectioned material; EDX...
Abstract
Failure of AISI type 321 stainless steel internal springs from newly manufactured lip seals on a shaft between a turbine power unit and a pump in a commercial aircraft secondary unit was investigated. Examination of the coils from two failed springs showed that both had failed by fatigue. The springs contained drawing defects that served as the fatigue crack initiation sites. It was recommended that the wire drawing process be investigated for various levels of steel cleanliness to predict the incidence of drawing defects at the wire surface. Stress analysis to determine the minimum tolerable defect size was also recommended.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001387
EISBN: 978-1-62708-215-0
... was also present on the bottom or the cell. SEM/EDX studies of the outer and inner surfaces of the gouged anode showed the presence of iron globules at the interface between the gouged and the unattacked anode. The chemical composition of the black powder was determined to be primarily iron. Cell...
Abstract
Nickel anodes failed in several electrolysis cells in a heavy-water upgrading plant. Dismantling of a cell revealed gouging and the presence of loosely attached black porous masses on the anode. The carbon steel top, plate was severely corroded. An appreciable quantity of black powder was also present on the bottom or the cell. SEM/EDX studies of the outer and inner surfaces of the gouged anode showed the presence of iron globules at the interface between the gouged and the unattacked anode. The chemical composition of the black powder was determined to be primarily iron. Cell malfunction was attributed to the accelerated dissolution of the carbon steel anode top, dislodgment of grains from the material, and subsequent closing of the small annular space between the anode and the cathode by debris from the anode top. Cladding of the carbon steel top with a corrosion-resistant material, such as nickel, nickel-base alloy, or stainless steel, was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0045903
EISBN: 978-1-62708-223-5
.... Analysis of the stringers using the SEM/EDX system revealed high concentrations of sulfur and manganese, indicating the presence of manganese sulfide inclusions ( Fig. 3a to c ). No other unusual microconstituents were observed. Fig. 3 EPMA analysis of inclusion stringers in failed extrusion press...
Abstract
A 230 mm (9 in.) thick casing, fabricated from ASTM 235-55 low-carbon steel, of a 450 Mg (500 ton) extrusion press failed after 27 years of service. Initial visual examination revealed an area that exhibited multiple origins and classic beach marks radiating out approximately 75 mm (3 in.) from the origin along the wall of a hydraulic-oil bleed hole. Investigation with a SEM showed corrosion pits along the bleed hole wall, but oxidation and corrosion prevented review of microfractographic details. Vacuum epoxy encapsulation, sectioning of the bleed hole, and metallographic examination revealed a basic microstructure of pearlite and ferrite with bands of slightly finer pearlite, with a large concentration of inclusion stringers in the area of the fracture origin. Further investigation using an energy-dispersive x-ray analyzer showed high concentrations of sulfur and manganese. Thus, the failure appeared to have resulted from corrosion-assisted fatigue, and the inclusion concentration in the fracture-initiated area indicated that the chemical-composition limits for sulfur and manganese would have greatly exceeded material specifications. A higher quality steel was recommended for the replacement unit to lessen the possibility of such gross inclusion segregation and to improve the fracture toughness of the cylinder.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001267
EISBN: 978-1-62708-215-0
... All the samples were examined in an SEM equipped with an energy-dispersive x-ray (EDX) microprobe. Metallographic cross sections were also prepared in the longitudinal direction through the origin on the ends of four broken spring samples Surface Examination Scanning Electron Microscopy...
Abstract
Music wire springs used in a printer return mechanism failed near the bend in the hook portion of the spring during qualification testing. Samples were examined in a scanning electron microscope equipped with an energy-dispersive x-ray microprobe. Fatigue fractures originated at rub marks on the inside edge of the spring. An investigation of loads encountered in service indicated that the springs had been loaded to a large fraction of the yield strength. Redesign of the spring mechanism was recommended.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001792
EISBN: 978-1-62708-241-9
... fracture rotary-bending fatigue steel ratchet marks beach marks star-shaped fracture pattern SEM/EDX analysis fatigue strength SAE 4340 (nickel-chromium-molybdenum alloy steel) UNS G43400 SAE 5046H (low-alloy chromium steel) UNS H50460 Introduction The primary objective...
Abstract
Two shafts that transmit power from the engine to the propeller of a container ship failed after a short time in service. The shafts usually have a 25 year lifetime, but the two in question failed after only a few years. One of the shafts, which carries power from a gearbox to the propeller, is made of low alloy steel. The other shaft, part of a clutch mechanism that regulates the transmission of power from the engine to the gears, is made of carbon steel. Fracture surface examination of the gear shaft revealed circumferential ratchet marks with the presence of inward progressive beach marks, suggesting rotary-bending fatigue. The fracture surfaces on the clutch shaft exhibited a star-shaped pattern, suggesting that the failure was due to torsional overload which may have initiated at corrosion pits discovered during the examination. Based on the observations, it was concluded that rotational bending stresses caused the gear shaft to fail due to insufficient fatigue strength. This led to the torsional failure of the corroded clutch shaft, which was subjected to a sudden, high level load when the shaft connecting the gearbox to the propeller failed.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001310
EISBN: 978-1-62708-215-0
... that was being used to condense steam from a nuclear power plant and had been in operation for less than 2 years. Cooling was done with river water. Specimen Selection One failed tube was submitted for failure analysis. The specimens were cut to suit the stage of the scanning electron microscope (SEM...
Abstract
Leaks developed in 22 admiralty brass condenser tubes. The tubes were part of a condenser that was being used to condense steam from a nuclear power plant and had been in operation for less than 2 years. Analysis identified three types of failure modes: stress-corrosion cracking, corrosion under deposit (pitting and crevice), and dezincification. Fractures were transgranular and typical of stress-corrosion cracking. The primary cause of the corrosion deposit was low-flow conditions in those parts of the condenser where failure occurred. Maintenance of proper flow conditions was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001706
EISBN: 978-1-62708-217-4
... confirmed that aluminium-containing pigment was applied on top of manganese phosphate primer to protect then the inner and outer surface of the beam. Fig. 17 SEM micrograph showing the locations used to generate EDX spectra to identify the constituents of the residue in the pit. 20× Fig. 18...
Abstract
The truck beam of the left main landing gear (MGL) of a Boeing 707 airplane collapsed on the ground just after the aircraft was unloaded and refueled. The investigation revealed that failure was caused by the propagation of an intergranular crack originating from the bottom of the pit. The crack reached the critical size and caused failure by stress-corrosion cracking (SCC) under static loading conditions in service. The failed beam was protected by a well adhering paint system. However, the presence of adequate amounts of corrosion preventive compound films (CPC) on the surfaces of the failed beam could not be conclusively established because of the long term service exposure and presence of lubricants.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001833
EISBN: 978-1-62708-241-9
... significant amounts of chromium and carbon ( Fig. 4a ) compared with the chromium and carbon contents on a typical area of grain boundaries ( Fig. 4b ). The SEM observation combined with EDX indicates that the microstructure of the steam chest material is primarily ferrite with granular, chrome-rich carbides...
Abstract
The failure of a boiler operating at 540 °C and 9.4 MPa was investigated by examining material samples from the near-failure region and by thermodynamic analysis. A scanning Auger microprobe, SEM, and commercial thermodynamic software codes were used in the investigation. Results indicated that the boiler failure was caused by grain-boundary segregation of phosphorous, tin, and nitrogen and the in-service formation of carbide films and granules on the grain boundaries.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001028
EISBN: 978-1-62708-214-3
... fracture in the root of the weld at the junction of the two sheets ( Fig. 13 , 14 , 15 ). SEM/EDX (energy-dispersive X-ray) analysis showed that this area contained some weld shrinkage ( Fig. 13 and 16 ), some nonmetallic inclusions ( Fig. 14 , 17 , and 18 ), and several areas of ductile dimples...
Abstract
Several AISI type 321 stainless steel welded oil tank assemblies used on helicopter engine systems began to leak in service. One failure, a fracture on the aft side of a spot weld, was submitted for analysis. SEM fractography examination revealed fatigue failure. The failure initiated at an overload fracture near the root of the weld and was followed by mode III fatigue crack propagation (tearing) around the periphery of the weld. The initial overload fracture was caused by a high external load, which produced a concentrated stress and fracture at the weld root. The subsequent fatigue fracture was caused by engine vibrations during operation of the aircraft. Fracture characteristics indicated that the fatigue would not have occurred if the initial damage had not taken place.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001774
EISBN: 978-1-62708-241-9
... were largely obliterated. SEM examination, however, showed the presence of large number of secondary cracks on the fracture surfaces ( Fig. 5 ). Compositional analysis carried out by using energy dispersive X-ray (EDX) analyzer attached to the SEM revealed that the corrosion products consisted...
Abstract
A ring-type joint in a reactor pipeline for a hydrocracker unit had failed. Cracks were observed on the flange and the associated ring gasket during an inspection following a periodic shutdown of the unit. The components were manufactured from stabilized grades of austenitic stainless steel; the flange from type 321, and the ring gasket from 347. Examination revealed that the failure occurred by transgranular stress-corrosion cracking, initiated by the presence of polythionic acid. Detailed metallurgical investigation was subsequently conducted to identify what may have caused the formation of polythionic acid in the process gas.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001845
EISBN: 978-1-62708-241-9
... The aim of the present investigation is to identify the root cause of failure and propose corrective measures. Visual inspection, scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray (EDX) spectrometer for fractographic and microstructural evaluation, along with chemical analysis...
Abstract
Two clamps that support overhead power lines in an electrified rail system fractured within six months of being installed. The clamps are made of CuNiSi alloy, a type of precipitation-strengthening nickel-silicon bronze. To identify the root cause of failure, the rail operator led an investigation that included fractographic and microstructural analysis, hardness testing, inductively coupled plasma spectroscopy, and finite-element analysis. The fracture was shown to be brittle in nature and covered with oxide flakes, but no other flaws relevant to the failure were observed. The investigation results suggest that the root cause of failure was a forging lap that occurred during manufacturing. Precracks induced by the forging defect and the influence of preload stress (due to bolt torque) caused the premature failure.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001366
EISBN: 978-1-62708-215-0
..., depending on crack locations. “Mud cracking” was observed in selected areas of fracture surfaces. Energy-dispersive x-ray (EDX) spectrographic analysis of dark, discolored areas on fracture surfaces revealed primarily base metal oxides ( Fig. 8 ). Fig. 6 Fracture through crack shown in Fig. 4...
Abstract
An AMS 4126 (7075-T6) aluminum alloy impeller from a radial inflow turbine fractured during commissioning. Initial examination showed that two adjacent vanes had fractured through airfoils in the vicinity of the vane leading edges, and one vane fractured through an airfoil near the hub in the vicinity of the vane trailing edge. Some remaining vanes exhibited radial and transverse cracks in similar locations. Binocular and scanning electron microscope examinations showed that the cracks had been caused by high-cycle fatigue and had progressed from multiple origins on the vane surface. Structural analysis indicated that the fatigue loading probably had been caused by forced excitation, resulting in the impeller vibrating at its resonant frequency. It was recommended that the impeller design, control systems, and material of construction be changed.
1