Skip Nav Destination
Close Modal
Search Results for
SAE 192
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2 Search Results for
SAE 192
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001321
EISBN: 978-1-62708-215-0
... Abstract Tube failures occurred in quick succession in two boiler units from a bank of six boilers in a refinery. The failures were confined to the SAE 192 carbon steel horizontal support tubes of the superheater pack. In both cases, the failure was by perforation adjacent to the welded fin on...
Abstract
Tube failures occurred in quick succession in two boiler units from a bank of six boilers in a refinery. The failures were confined to the SAE 192 carbon steel horizontal support tubes of the superheater pack. In both cases, the failure was by perforation adjacent to the welded fin on the crown of the top tubes and located in an area near the upward bend of the tube. The inside of all the tubes were covered with a loosely adherent, black, alkaline, powdery deposit comprised mainly of magnetite. The corroded areas, however, had relatively less deposit. The morphology of the corrosion damage was typical of alkaline corrosion and confirmed that the boiler tubes failed as a result of steam blanketing that concentrated phosphate salts. The severe alkaline conditions developed most probably because of the decomposition of trisodium phosphate, which was used as a water treatment chemical for the boiler feed water.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001322
EISBN: 978-1-62708-215-0
... Abstract A failed SAE-192 carbon steel tube from a 6.2-MPa (900-psig), 200-Mg/h (180-ton/h) capacity refinery boiler was analyzed to determine its failure mode. Optical and SEM examination results were combined with knowledge of the boiler operating conditions to conclude that the failure was...
Abstract
A failed SAE-192 carbon steel tube from a 6.2-MPa (900-psig), 200-Mg/h (180-ton/h) capacity refinery boiler was analyzed to determine its failure mode. Optical and SEM examination results were combined with knowledge of the boiler operating conditions to conclude that the failure was hydrogen-induced. The hydrogen was probably generated by the steam-iron reaction. The source of steam on the flue gas side could be traced to a cracked fillet weld in the boiler The failure mode was unusual in that the attack was found to originate from the flue gas side of the tube rather than the steam side.