Skip Nav Destination
Close Modal
Search Results for
Rotating-bending fatigue
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 158 Search Results for
Rotating-bending fatigue
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0091092
EISBN: 978-1-62708-224-2
.... Investigation (visual inspection, inspection records review, optical and scanning electron microscopy, and fractography) supported the conclusion that the fracture mode for both shafts was low-cycle rotating-bending fatigue initiating and propagating by combined torsional and reverse bending stresses...
Abstract
A 60.3 mm (2.375 in.) diam drive shaft in the drive train of an overhead crane failed. The part submitted for examination was a principal drive shaft that fractured near a 90 deg fillet where the shaft had been machined down to 34.9 mm (1.375 in.) to serve as a wheel hub. A 9.5 mm (0.375 in.) wide x 3.2 mm (0.125 in.) deep keyway was machined into the entire length of the hub, ending approximately 1.6 mm (0.062 in.) away from the 90 deg fillet. A second shaft was also found to have cracked at a change in diameter, where it was machined down to serve as the motor drive hub. Investigation (visual inspection, inspection records review, optical and scanning electron microscopy, and fractography) supported the conclusion that the fracture mode for both shafts was low-cycle rotating-bending fatigue initiating and propagating by combined torsional and reverse bending stresses. Recommendations included replacing all drive shafts with new designs that eliminated the sharp 90 deg chamfers in favor of a more liberal chamfer, which would reduce the stress concentration in these areas.
Image
Published: 01 January 2002
Fig. 23 Carbon steel shaft broken in rotating bending fatigue. Fatigue fracture initiated at numerous sites along a sharp snap ring groove; ratchet marks appear as shiny spots along the surface. Cracks coalesced into a single fatigue crack that—due to the bending stress distribution—grew most
More
Image
Published: 15 January 2021
Fig. 23 Carbon steel shaft broken in rotating-bending fatigue. Fatigue fracture initiated at numerous sites along a sharp snap ring groove; ratchet marks appear as shiny spots along the surface. Cracks coalesced into a single fatigue crack that—due to the bending-stress distribution—grew most
More
Image
Published: 01 January 2002
Fig. 24 Rotating bending fatigue failure of keyed medium-carbon steel shaft. Fatigue initiated at a corner of the keyway, as marked. Beach marks in that vicinity are concentric about the origin. As the fatigue crack grew, the bending stress distribution produced more rapid growth near
More
Image
Published: 30 August 2021
Fig. 5 Typical rotating-bending fatigue marks on the fracture surface of a uniformly loaded rotating shaft. Marks are produced from single and multiple origins (arrows) having moderate and severe stress concentration; shaded areas are final-fracture zones. Shaft rotation is clockwise.
More
Image
Published: 15 January 2021
Fig. 24 Rotating-bending fatigue failure of keyed medium-carbon steel shaft. Fatigue initiated at a corner of the keyway, as marked. Beach marks in that vicinity are concentric about the origin. As the fatigue crack grew, the bending-stress distribution produced more rapid growth near
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001846
EISBN: 978-1-62708-241-9
...-cycle rotation-bending fatigue. The bearing sleeve failed as a result of abrasive and adhesive wear. Detailed metallurgical analysis indicated that the sleeve and its respective journal had been subjected to abnormally high temperatures, increasing the amount of friction between the sleeve, bearing bush...
Abstract
The main shaft in a locomotive turbocharger fractured along with an associated bearing sleeve. Visual and fractographic examination revealed that the shaft fractured at a sharp-edged groove between two journals of different cross-sectional area. The dominant failure mechanism was low-cycle rotation-bending fatigue. The bearing sleeve failed as a result of abrasive and adhesive wear. Detailed metallurgical analysis indicated that the sleeve and its respective journal had been subjected to abnormally high temperatures, increasing the amount of friction between the sleeve, bearing bush, and journal surface. The excessive heat also softened the induction-hardened case on the journal surface, decreasing its fatigue strength. Fatigue crack initiation occurred at the root fillet of the groove because of stress concentration.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001350
EISBN: 978-1-62708-215-0
... examination showed ratchet marks at the edges of the fracture surface, indicating that loading was of the rotating bending type. Electron fractography using the two-stage replica method revealed striation marks characteristic of fatigue fracture. The striations indicated that the cracks had advanced on many...
Abstract
Upon arrival at the erection site, an AISI type 316L stainless steel tank intended for storage of fast breeder test reactor coolant (liquid sodium) exhibited cracks on its shell at two of four shell/nozzle fillet-welded joint regions. The tank had been transported from the manufacturer to the erection site by road, a distance of about 800 km (500 mi). During transport, the nozzles were kept at an angle of 45 deg to the vertical because of low clearance heights in road tunnels. The two damaged joints were unsupported at their ends inside the vessel, unlike the two uncracked nozzles. Surface examination showed ratchet marks at the edges of the fracture surface, indicating that loading was of the rotating bending type. Electron fractography using the two-stage replica method revealed striation marks characteristic of fatigue fracture. The striations indicated that the cracks had advanced on many “mini-fronts,” also indicative of nonuniform loading such as rotating bending. It was recommended that a support be added at the inside end of the nozzles to rigidly connect with the shell. In addition to avoiding transport problems, this design modification would reduce fatigue loading that occurs in service due to vibration of the nozzles during filling and draining of the tank.
Image
Published: 15 January 2021
Fig. 26 Fatigue cracks in laboratory test specimens. (a) Steering knuckle made of ferritic ductile iron showing macroscopic features of a fatigue crack initiated at a sharp corner. (b) Rotating-bending fatigue specimen made of as-cast gray iron. Fatigue in this relatively brittle gray iron
More
Image
Published: 01 January 2002
Fig. 26 Fatigue cracks in laboratory test specimens of (a) a steering knuckle made of ferritic ductile iron showing macroscopic features of a fatigue crack initiated at a sharp corner, and (b) a rotating bending fatigue specimen made of as-cast gray iron. Fatigue in this relatively brittle
More
Image
Published: 15 January 2021
Fig. 21 Curved beach marks are centered on the surface origin (arrow) of this shaft that failed in rotating-bending fatigue. Beach marks are nearly semicircular near the origin. As the crack became larger, it grew more rapidly near the surface where bending stress was highest, resulting
More
Image
Published: 01 January 2002
Fig. 21 Curved beach marks are centered on the surface origin (arrow) of this shaft that failed in rotating bending fatigue. Beach marks are nearly semicircular near the origin. As the crack became larger, it grew more rapidly near the surface where bending stress was highest, resulting
More
Image
Published: 15 January 2021
Fig. 2 Close-up view of ratchet marks between distinct surface origin sites in an 18.4 cm (7.25 in.) low-alloy steel shaft that failed in rotating-bending fatigue. Ratchet marks (at arrows) are roughly radial steps formed where fatigue cracks initially propagating on different planes
More
Image
Published: 01 January 2002
Fig. 2 Close-up view of ratchet marks between distinct surface origin sites in a low-alloy steel 18.4 cm (7.25 in.) shaft that failed in rotating bending fatigue. Ratchet marks (at arrows) are roughly radial steps formed where fatigue cracks initially propagating on different planes
More
Image
in X-Ray Diffraction Residual-Stress Measurement in Failure Analysis
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 19 Observation of failed nickel-base alloy (Waspaloy) specimen after rotating-bend fatigue. (a) Macro view. (b) Micrograph. Source: Ref 53
More
Image
in X-Ray Diffraction Residual Stress Measurement in Failure Analysis
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 19 Observation of failed nickel-base alloy (Waspaloy) specimen after rotating bend fatigue. (a) Macro view. (b) Micrograph. Source: Ref 43
More
Image
Published: 30 August 2021
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003539
EISBN: 978-1-62708-180-1
... loading of prismatic members and rotating bending of shafts, the driving force for fatigue initiation (e.g., stress range) is relatively uniform over extended volumes or regions. For relatively low driving force, fatigue initiates at one or a few locations within these extended regions or volumes where...
Abstract
This article commences with a summary of fatigue processes and mechanisms. It focuses on fractography of fatigue. Characteristic fatigue fracture features that can be discerned visually or under low magnification are described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion of fatigue in nonmetals. The article reviews the various macroscopic and microscopic features to characterize the history and growth rate of fatigue in metals. It concludes with a description of fatigue of polymers and composites.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001794
EISBN: 978-1-62708-241-9
... Abstract The drive shaft in a marine propulsion system broke, stranding a large vessel along the Canadian seacoast. The shaft was made from quenched and tempered low-alloy steel. Fractographic investigation revealed that the shaft failed under low rotating-bending variable stress. Fatigue...
Abstract
The drive shaft in a marine propulsion system broke, stranding a large vessel along the Canadian seacoast. The shaft was made from quenched and tempered low-alloy steel. Fractographic investigation revealed that the shaft failed under low rotating-bending variable stress. Fatigue propagation occurred on about 95% of the total cross section of the shaft, under both low-cycle and high-cycle fatigue mechanisms. It was found that the fillet radius at the fracture’s origin was smaller than the one provisioned by design. As a result, the stresses at this location exceeded the values used in the design calculations, thus causing the initiation of the cracking. Moreover, although the shaft had been quenched and tempered, its actual hardness did not have the optimal value for long-term fatigue strength.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
... that act as points of stress concentration, facilitating fatigue crack initiation. In many common situations, such as uniaxial loading of prismatic members and rotating bending of shafts, the driving force for fatigue initiation (e.g., stress range) is relatively uniform over extended volumes...
Abstract
Fatigue failure of engineering components and structures results from progressive fracture caused by cyclic or fluctuating loads. Fatigue is an important potential cause of mechanical failure, because most engineering components or structures are or can be subjected to cyclic loads during their lifetime. This article focuses on fractography of fatigue. It provides an abbreviated summary of fatigue processes and mechanisms: fatigue crack initiation, fatigue crack propagation, and final fracture,. Characteristic fatigue fracture features that can be discerned visually or under low magnification are then described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion on fatigue in polymers and polymer-matrix composites.
1