1-20 of 175 Search Results for

Rotating equipment

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 15 Life assessment of rotating equipment damaged by exposure to excessive temperatures or loss of lubricant. (a) Journal that overheated because of the loss of lubricating oil. (b) Hardness test results of the heat-damaged region indicated the formation of a hard martensite layer More
Image
Published: 30 August 2021
Fig. 15 Life assessment of rotating equipment that has been damaged by exposure to excessive temperatures or loss of lubricant. (a) Journal that overheated because of the loss of lubricating oil. (b) Hardness test results for the heat-damaged region indicated the formation of a hard martensite More
Image
Published: 15 May 2022
Fig. 44 Schematic drawing of clamshell-type rotational molding equipment More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046418
EISBN: 978-1-62708-234-1
... Abstract Equipment in which an assembly of in-line cylindrical components rotated in water at 1040 rpm displayed excessive vibration after less than one hour of operation. The malfunction was traced to an aluminum alloy 6061-T6 combustion chamber that was part of the rotating assembly. Analysis...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089774
EISBN: 978-1-62708-235-8
... Abstract An amusement ride failed when a component in the ride parted, permitting it to fly apart. The ride consisted of a central shaft supporting a spider of three arms, each of which was equipped with an AISI 1040 steel secondary shaft about which a circular platform rotated. The main shaft...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001356
EISBN: 978-1-62708-215-0
... was also recommended. Rotating equipment 18Mn-5Cr Pitting corrosion Intergranular corrosion Stress-corrosion cracking Background Applications Retaining rings are used in electrical generators to resist the centrifugal forces of the copper windings and are among the most highly stressed...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001578
EISBN: 978-1-62708-233-4
... Abstract Vibration analysis can be used in solving both rotating and nonrotating equipment problems. This paper presents case histories that, over a span of approximately 25 years, used vibration analysis to troubleshoot a wide range of problems. Current testing Fans Generators Motors...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006864
EISBN: 978-1-62708-395-9
... Abstract This article discusses technologies focused on processing plastic materials or producing direct tools used in plastics processing. The article focuses on extrusion and injection molding, covering applications, materials and their properties, equipment, processing details, part design...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0090276
EISBN: 978-1-62708-230-3
... Abstract Cracking was found in the heads on large Yankee dryers, large, cylindrical, rotating, pressurized, high-temperature, cast iron pressure vessels (ASME Boiler and Pressure Vessel Code Section VIII, Rules for Construction of Pressure Vessels), used to remove moisture from sheets of tissue...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001551
EISBN: 978-1-62708-233-4
... indicating rotational vibration fatigue. Keeping bolts tight solved this problem. In another case, grinding machines were unable to produce surfaces of uniform quality and smoothness on steel bearing products. Measurements showed that self-excited vibrations were created when particular steels were ground...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001139
EISBN: 978-1-62708-221-1
... Abstract A truck-mounted hydraulic crane had a horizontal thrust bearing with one race attached to the truck and the other to the rotating crane. The outside race of the bearing was driven by a pinion gear, and it is through this mechanism that the crane body rotated about a vertical axis...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
..., and to not operate above a certain temperature that alters the microstructure or oxidizes the material. For rotating equipment, creep can also lead to rubbing contact that can be detrimental and can be considered a failure long before a rotor would fail in creep rupture. Corrosion Allowances Designs...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003526
EISBN: 978-1-62708-180-1
... and components are often performed to assure that resonance problems are not a concern. In other cases, if the magnitude of a vibration spectrum is known, then the specific response of the structure can be quantified to determine actual displacement and stress fields. Large rotating equipment and machinery...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001466
EISBN: 978-1-62708-221-1
... Abstract A shaft, which carried both a worm wheel and hoist barrel, fractured at a reduction in diameter adjacent to a mating gearbox. The appearance of the fracture was characteristic of a fatigue failure of a rotating shaft resulting from excessive bending stresses. Cracks of the fatigue type...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006773
EISBN: 978-1-62708-295-2
... response of the structure can be quantified to determine actual displacement and stress fields. Large rotating equipment and machinery are routinely subjected to FEA vibration modal analysis to determine the natural frequencies and the resulting mode shapes. Equipment such as turbines, compressors...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006804
EISBN: 978-1-62708-329-4
... the effects of fire and heat exposure on material or contained fluid (e.g., lubricants and sealants) properties. For example, during operation of rotating equipment that requires lubrication to reduce heating and the coefficient of friction, overheating can occur if the lubricant is lost or degraded...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... structural components structural design LIFE ASSESSMENT of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The articles in the “Structural Life Assessment Methods” Section in this Volume are written to provide an overview...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006819
EISBN: 978-1-62708-329-4
... and rotating equipment. Often, original designs either do not properly consider fatigue or original fabrication defects, or unfavorable geometry/weld details lead to premature fatigue failure. Examples of Industry Failures Many fixed and rotating equipment fatigue failures have occurred...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001485
EISBN: 978-1-62708-225-9
... ultimately in the production of the characteristic grooves, the oxide acting as an abrasive. In bearings of stand-by equipment it may be necessary to arrange for continuous slow rotation of the particular shafts, while other plant is running, in order to avoid trouble from this cause. In other cases...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001138
EISBN: 978-1-62708-231-0
... its mounting trunnion and extended during its motion, it interfered with a frame member. This caused both a bending load and a rotational movement. These effects caused a combination of fretting, galling, and fatigue to the internal thread structure of the clevis. As a result of these deleterious...