1-20 of 138 Search Results for

Rolling contact Mechanical properties

Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001300
EISBN: 978-1-62708-215-0
... carefully for signs of cracking or misalignment. Ultrasonic testing is recommended for detection of subsurface cracks, while magnetic particle testing will detect surface cracking. Visual inspection can be used to determine the teeth contact pattern. Alignment Pulverizers Rolling contact Mechanical...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003564
EISBN: 978-1-62708-180-1
... as materials for rolling-contact bearing components show some practical advantages over traditional bearing steels. The properties of ceramics, specifically low density and high stiffness, are of most interest to gas turbine ( Ref 1 ) and machine tool manufacturers ( Ref 2 ). High hardness, low coefficient...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003563
EISBN: 978-1-62708-180-1
... considerations of coating-substrate material properties, coating thickness, and coating processes to combat RCF failure in TS coatings. chemical vapor deposition coating coating thickness failure modes fatigue performance overlay coatings physical vapor deposition rolling contact fatigue thermal...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001531
EISBN: 978-1-62708-231-0
... to the performance of cartwheel. Dynamic fracture toughness Fatigue property Performance evaluation Railroad wheels Static mechanical property Fe-0.55C-0.73Mn Fe-0.60C-0.85Mn Fe-0.5C-0.7Mn Rolling-contact wear Spalling wear Fatigue fracture 1. Introduction The railway system in China plays...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
..., association websites, and ISO standards. failure analysis heat treatment mechanical properties rolling-element bearings TO ADEQUATELY ANALYZE failure modes of rolling-element bearings (REBs), it is necessary to briefly review one of the two main disciplines of machine design: the description...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006792
EISBN: 978-1-62708-295-2
... Subsurface stress under rolling contact Bearing Life Prediction The life prediction of rolling-element bearings is based on a statistical analysis of bearing tests performed in a controlled environment (e.g., full-film lubrication, dust free). Given that the material properties and cleanliness...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006789
EISBN: 978-1-62708-295-2
.... Wear may occur by rolling-sliding or by surface fatigue (rolling-contact fatigue, or RCF), but eventually RCF begins, and lines of travel caused by micropitting may appear on bearing surfaces. Rolling lines of travel can progress to visible pitting and even spalling. When the mechanical action...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001092
EISBN: 978-1-62708-214-3
... that intersected undamaged, burnished, and surface-spalled zones revealed no anomalies in the chemistry, microstructure, or hardness that could have caused the damage. The physical evidence suggested that the operable mechanism was contact fatigue caused by misalignment of the shaft in the assembly. Contact...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
... mechanisms fabrication practices fretting corrosion hardness heat treatment lubrication plastic flow rolling-contact fatigue rolling-element bearings failures ROLLING-ELEMENT BEARINGS use rolling elements (either balls or rollers) interposed between two raceways, and relative motion is permitted...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001645
EISBN: 978-1-62708-232-7
... resistance, toughness, temper resistance, and microstructural stability under anticipated and actual service conditions. 2 Notwithstanding the aforesaid requirements, the most important property for bearings is the resistance to rolling-contact fatigue. Rolling-contact fatigue results from the repeated...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006911
EISBN: 978-1-62708-395-9
.... Commercial applications of polymers with desirable tribological properties include mechanical components (gears, bearings, seals, tires, etc.), additives and dry-sprays, solid lubricants, and medical applications (joint replacement, soft implants, contact lenses, catheters, etc.). When tribological...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
... propagation in different environments. The article concludes with a discussion on rolling-contact fatigue, macropitting, micropitting, and subcase fatigue. corrosion fatigue crack growth crack initiation damage tolerance criterion fatigue fracture fatigue strength fatigue-crack propagation finite...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001535
EISBN: 978-1-62708-232-7
... in the 1-2-3-4 type Sendzimir mill The smaller diameter work rolls, which deform the steel sheets, are driven by the four second-intermediate drive rolls through frictional contact with the first-intermediate rolls. The screw-down mechanism of the mill is regulated by rotary positioning of the two...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001780
EISBN: 978-1-62708-241-9
... Abstract A number of failures involving carbon and alloy steels were analyzed to assess the effects of inclusions and their influence on mechanical properties. Inclusions, including brittle oxides and more ductile manganese sulfides (MnS), affect fatigue endurance limit, fatigue crack...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003571
EISBN: 978-1-62708-180-1
... classification is based on the two-term model that divides wear mechanisms into interfacial and bulk or cohesive. The second is based on the perceived wear mechanism. The third classification is specific to polymers and draws the distinction based on mechanical properties of polymers. In this classification...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047199
EISBN: 978-1-62708-234-1
... retreated to the T6 temper. Thermal Treatment Table 1 shows the compositions and mechanical properties of materials 1, 2, and 3 and the exfoliation resistance of forgings from the three materials that was obtained with various thermal treatments. In general, forgings in the T6 temper had...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003558
EISBN: 978-1-62708-180-1
... based on the characterization of the elements of the tribosystem at the contact. The nominal type of motion, that is rolling, sliding and impact, and in the case of sliding, lubricated or nonlubricated wear, often are considered as major subcategories of nonabrasive wear situations. Some subcategories...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
.... contact fatigue corrosion fatigue damage tolerance criterion design life fatigue fracture fatigue properties finite-life criterion infinite-life criterion microstructure thermal fatigue FATIGUE FAILURES may occur in components subjected to fluctuating (time-dependent) loading as a result...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
... mechanical properties at the level expected? Were surface or internal discontinuities present that could have contributed to failure? Did the microstructure conform to that prescribed? Shape. Did the part comply with all pertinent dimensional requirements of the specification? Did the part have...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006850
EISBN: 978-1-62708-395-9
... their physical and mechanical properties.) Examples of the tribological use of plastics (involving sliding between two surfaces) include gears and cams of various machines, tires, brake pads, conveyors, hoppers, automobile body parts, aircraft and spacecraft parts, hip/knee joint replacements, roller-skate...