Skip Nav Destination
Close Modal
By
Friedrich Karl Naumann, Ferdinand Spies
By
Tomasz Didenko, Wesley D. Pridemore
By
Zhi-Qiang Yu, Zhen-Guo Yang
By
Amitava Ray, S.K. Dhua, K.B. Mishra, S. Jha
By
Q. Ahsan, A.S.M.A. Haseeb, E. Haque, J.P. Celis
Search Results for
Rollers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 175
Search Results for Rollers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Denting damage to cone, cup, and rollers from debris entering the bearing f...
Available to PurchasePublished: 01 January 2002
Fig. 11 Denting damage to cone, cup, and rollers from debris entering the bearing from spalling in another component, through defective seals, or from improperly cleaned housings.
More
Image
in A Survey of the Causes of Failure of Rolling Bearings
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Fig. 7 Failure of rollers by fatigue cracking on diametrical plane.
More
Image
in A Survey of the Causes of Failure of Rolling Bearings
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Fig. 8 Complex mode of failure of rollers.
More
Image
Showing Plastic distortion of rollers and disintegration of the cage of a r...
Available to Purchase
in A Survey of the Causes of Failure of Rolling Bearings
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Fig. 14 Showing Plastic distortion of rollers and disintegration of the cage of a roller bearing.
More
Image
in A Survey of the Causes of Failure of Rolling Bearings
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Fig. 15 Material from rollers smeared on to cage.
More
Image
in Failure Analysis of Railroad Components
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 48 Water etching present on rollers
More
Image
Sketch of sugar mill roller. (a) Three rollers of sugar mill placed in tria...
Available to PurchasePublished: 30 August 2021
Fig. 20 Sketch of sugar mill roller. (a) Three rollers of sugar mill placed in triangular formation. (b) Direction of maximum force acting on top roller
More
Image
( a ) Close-up macro-images of the rollers elements showing uniformly space...
Available to Purchase
in Electrical Fluting Failure of a Tri-Lobe Roller Bearing
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 3 ( a ) Close-up macro-images of the rollers elements showing uniformly spaced fluting marks and ( b ) close-up macro-images of the outer ring raceway documenting fluting marks at one of the interference points
More
Image
Craters diameters on the rollers: histogram ( a ), classification ( b ). Th...
Available to Purchase
in Electrical Fluting Failure of a Tri-Lobe Roller Bearing
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 6 Craters diameters on the rollers: histogram ( a ), classification ( b ). The average diameter of the craters measured 2.9 μm
More
Book Chapter
Failure of Roller Path Rail
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001465
EISBN: 978-1-62708-231-0
... the lower roller path on which the superstructure of a walking drag-line excavator slewed. The cracking, which ran horizontally, developed at the junction of the underside of the rail head with the web and originated at surface defects in the form of grooves present on the castings. It was concluded...
Abstract
A rail section that failed due to fatigue showed a smooth surface with well-developed conchoidal markings. This indicated successive stages of crack propagation, characteristic of fatigue failure. The crack was one of several which developed in the sections of curved rail which formed the lower roller path on which the superstructure of a walking drag-line excavator slewed. The cracking, which ran horizontally, developed at the junction of the underside of the rail head with the web and originated at surface defects in the form of grooves present on the castings. It was concluded that the cracking was caused by lateral deflection of the rails under in-service loads. The web of a rail would normally be loaded in compression but, should lateral movements occur, then it would be subjected to bending stresses and fatigue cracks could break out in regions where excessive tensile components predominated.
Book Chapter
Failure of a Rubber Office-Chair Roller
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0048536
EISBN: 978-1-62708-222-8
... Abstract A brittle-like crack propagation caused failure in a rubber office-chair roller. A crack initiated from the inside of the roller and propagated in a discontinuous brittle-like fashion, as indicated from the evolution of concentric fracture striations. Compressive fatigue was a dominant...
Abstract
A brittle-like crack propagation caused failure in a rubber office-chair roller. A crack initiated from the inside of the roller and propagated in a discontinuous brittle-like fashion, as indicated from the evolution of concentric fracture striations. Compressive fatigue was a dominant mode of loading. Nevertheless, the fracture surface of the failure-causing crack suggested a tensile-stress component was involved in driving failure.
Book Chapter
Broken Inner Rings of Spherical Roller Bearings
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001191
EISBN: 978-1-62708-225-9
... Abstract Inner rings of spherical roller bearings out of full hardening ball bearing steel 100 CrMn 6 (Fe-1C-1.5Cr-1.1Mn, Material No. 1.3520) failed in service. Due to the cracks, parts from the middle flange broke or the rings failed in radial direction completely. All the cracks and fracture...
Abstract
Inner rings of spherical roller bearings out of full hardening ball bearing steel 100 CrMn 6 (Fe-1C-1.5Cr-1.1Mn, Material No. 1.3520) failed in service. Due to the cracks, parts from the middle flange broke or the rings failed in radial direction completely. All the cracks and fracture originated from the middle flange. In all of the three rings one flank showed heavy wearing and scouring. The cracks started from the edge of this flank with the cylindrical mantle surface of the middle flange. The cracking resembled fatigue cracking. However, in a fine-grained hardened steel such as this, fracture faces due to stress-cracking and overload fracture look the same. Metallographic examination showed the failure of the rings was a result of repeated heating and rapid cooling of the surface due to the grinding of the bearings on one flank of the middle flange. The stress-cracks (grindcracks) spread in steps which finally led to the breaking off of parts from the middle flange and complete failure of the rings.
Book Chapter
Electrical Fluting Failure of a Tri-Lobe Roller Bearing
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001796
EISBN: 978-1-62708-241-9
... Abstract A tri-lobe cylindrical roller bearing was submitted for investigation to determine the cause of uniformly spaced axial fluting damages on its rollers and outer raceway surfaces. The rollers and raceways were made from premium-melted M50 and M50NiL, aircraft quality steels often used...
Abstract
A tri-lobe cylindrical roller bearing was submitted for investigation to determine the cause of uniformly spaced axial fluting damages on its rollers and outer raceway surfaces. The rollers and raceways were made from premium-melted M50 and M50NiL, aircraft quality steels often used in bearings to minimize the effects of orbital slippage and rolling-contact fatigue. The damaged areas were examined under a scanning electron microscope, which revealed a high density of microcraters, characteristic of local melting and material removal associated with bearing currents. Investigators also examined the effect of electrical discharge on crater dimensions and density and the role that thermoelectric voltage potentials may have played.
Book Chapter
Galling Wear on a Steel Inner Cone of a Roller-Bearing Assembly
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046371
EISBN: 978-1-62708-234-1
... Abstract When a roller-bearing assembly was removed from an aircraft for inspection after a short time in service, several areas of apparent galling were noticed around the inside surface of the inner cone of the bearing. These areas were roughly circular spots of built-up metal. The bearing...
Abstract
When a roller-bearing assembly was removed from an aircraft for inspection after a short time in service, several areas of apparent galling were noticed around the inside surface of the inner cone of the bearing. These areas were roughly circular spots of built-up metal. The bearing had not seized, and there was no evidence of heat discoloration in the galled areas. The inner cone, made of modified 4720 steel and carburized for wear resistance, rode on an AISI type 630 (17-4 PH) stainless steel spacer. Consequently, it was desirable to determine whether the galled spots contained any stainless steel from the spacer. Other items for investigation were the nature of the bond between the galled spot and the inner cone and any evidence of overtempering or rehardening resulting from localized overheating. Analysis (visual inspection, electron probe x-ray microanalysis, microscopic examination, and hardness testing) supported the conclusions that galling had been caused by a combination of local overload and abnormal vibration of mating parts of the roller-bearing assembly. No recommendations were made.
Book Chapter
Failure Analysis of Fatigue Fracture on the Outer Ring of a Cylindrical Roller Bearing in an Air Blower Motor
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001831
EISBN: 978-1-62708-241-9
... Abstract An air blower in an electric power plant failed unexpectedly when a roller bearing in the drive motor fractured along its outer ring. Both rings, as well as the 18 rolling elements, were made from GCr15 bearing steel. The bearing also included a machined brass (MA/C3) cage...
Abstract
An air blower in an electric power plant failed unexpectedly when a roller bearing in the drive motor fractured along its outer ring. Both rings, as well as the 18 rolling elements, were made from GCr15 bearing steel. The bearing also included a machined brass (MA/C3) cage and was packed with molybdenum disulfide (MoS 2 ) lithium grease. Metallurgical structures and chemical compositions of the bearing’s matrix materials were inspected using a microscope and photoelectric direct reading spectrometer. SEM/EDS was used to examine the local morphology and composition of fracture and contact surfaces. Chemical and thermal properties of the bearing grease were also examined. The investigation revealed that the failure was caused by wear due to dry friction and impact, both of which worsened as a result of high-temperature degradation of the bearing grease. Fatigue cracks initiated in the corners of the outer ring and grew large enough for a fracture to occur.
Book Chapter
Metallurgical Investigation of a Prematurely Failed Roller Bearing Used in the Support and Tilting System of a Steel Making Converter Used in an Integrated Steel Plant
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001645
EISBN: 978-1-62708-232-7
... Abstract An extensive metallurgical investigation was carried out on samples of a failed roller bearing from the support and tilting system of a basic oxygen furnace converter used in the steel melting shop of an integrated steel plant. The converter bearing was fabricated from low-carbon...
Abstract
An extensive metallurgical investigation was carried out on samples of a failed roller bearing from the support and tilting system of a basic oxygen furnace converter used in the steel melting shop of an integrated steel plant. The converter bearing was fabricated from low-carbon, carburizing grade steel and had failed in service within a year of fitting to a repaired shaft. Microscopic observations of both the broken roller and inner-race samples revealed subsurface cracking and preponderance of brittle oxide and other macroinclusions. Electron probe microanalysis studies confirmed that the brittle oxides that formed stringers were alumina, and the other macroinclusions were complex silicates. Both the alumina and silicate inclusions were deleterious to contact-fatigue properties. Microstructurally, the carburized regions of the broken roller and of inner-race samples contained high-carbon tempered martensite. Microhardness measurements revealed that. Although the core hardness of the roller and the inner-race samples were similar, the surface hardness of the roller was approximately 8.5 HRC units harder than that of the inner-race. SEM observations of the roller fracture surface revealed striations indicative of fatigue, and EDS analyses corroborated a high incidence of silicate inclusions at crack sites. The study suggests that the failure of the bearing occurred because the hardness difference between the roller bearing and the inner-race surfaces resulted in wear of the inner-race. The wear led to shaft misalignment and play during service. The misalignment, coupled with the presence of inclusions, caused fatigue failure of the roller bearing.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047939
EISBN: 978-1-62708-225-9
... Abstract Rough operation of the roller bearing mounted in an electric motor/gearbox assembly was observed. The bearing components made of low-alloy steel (4620 or 8620) and the cup, cone and rollers were carburized, hardened and tempered. The contact surfaces of these components (cup, cone...
Abstract
Rough operation of the roller bearing mounted in an electric motor/gearbox assembly was observed. The bearing components made of low-alloy steel (4620 or 8620) and the cup, cone and rollers were carburized, hardened and tempered. The contact surfaces of these components (cup, cone and roller) were revealed to be uniformly electrolytically etched by visual examination. The action similar to anodic etching was believed to have occurred as a result of stray currents in the electric motor (not properly grounded) and the presence of an electrolyte (moisture) between the cup and roller surfaces of the bearing. As a remedial action, the bearing was insulated for protection from stray currents by grounding of the motor and the moisture was kept out by sealing both bearings in the assembly.
Book Chapter
Wear Failure of a Leaded Bronze Bearing: Correlation Between Plant Experience and Laboratory Wear Test Data
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001530
EISBN: 978-1-62708-225-9
... Abstract This paper describes an investigation on the failure of a large leaded bronze bearing that supports a nine-ton roller of a plastic calendering machine. At the end of the normal service life of a good bearing, which lasted for seven years, a new bearing was installed. However the new...
Abstract
This paper describes an investigation on the failure of a large leaded bronze bearing that supports a nine-ton roller of a plastic calendering machine. At the end of the normal service life of a good bearing, which lasted for seven years, a new bearing was installed. However the new one failed catastrophically within a few days, generating a huge amount of metallic wear debris and causing pitting on the surface of the cast iron roller. Following the failure, samples were collected from both good and failed bearings. The samples were analyzed chemically and their microstructures examined. Both samples were subjected to accelerated wear tests in a laboratory type pin-on-disk apparatus. During the tests, the bearing materials acted as pins, which were pressed against a rotating cast iron disk. The wear behaviors of both bearing materials were studied using weight loss measurement. The worn surfaces of samples and the wear debris were examined by light optical microscope, SEM, and energy-dispersive x-ray microanalyzer. It was found that the laboratory pin-on-disk wear data correlated well with the plant experience. It is suggested that the higher lead content ~18%) of the good bearing compared with 7% lead of the failed bearing helped to establish a protective transfer layer on the worn surface. This transfer layer reduced metal-to-metal contact between the bearing and the roller and resulted in a lower wear rate. The lower lead content of the failed bearing does not allow the establishment of a well-protected transfer layer and leads to rapid wear.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001513
EISBN: 978-1-62708-232-7
... Abstract While in the stationary mode, capillary action at the contact line between roller and race in a steel rolling mill taper bearing caused a concentration of lubricant and moisture to occur. This lead to lines of corrosion pits at roller intervals. During subsequent operation...
Abstract
While in the stationary mode, capillary action at the contact line between roller and race in a steel rolling mill taper bearing caused a concentration of lubricant and moisture to occur. This lead to lines of corrosion pits at roller intervals. During subsequent operation, the individual corrosion pits acted as stress raisers and initiated coarse grain spalling. Due to a bending moment on the rotating element, this in turn initiated bending fatigue normal to the longitudinal axis, which propagated through to the bore of the inner ring. Stain marks were visible in the bore at a spacing corresponding to roller intervals where lubricant had flowed through the cracks from the race.
Book Chapter
Fatigue Fracture of a Motor Shaft Due to the Application of Weld Metal
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001435
EISBN: 978-1-62708-236-5
... Abstract Shaft fracture of a 10 hp squirrel cage motor took place at the driving end just outside the roller bearing and not at an abrupt change of section behind the bearing where it might be expected to occur. A portion of shaft to the right of the fracture was deeply grooved. About a year...
Abstract
Shaft fracture of a 10 hp squirrel cage motor took place at the driving end just outside the roller bearing and not at an abrupt change of section behind the bearing where it might be expected to occur. A portion of shaft to the right of the fracture was deeply grooved. About a year prior to failure the inner race of the roller bearing became slack on the shaft and the seating was built up by the metal-spray process. The shaft was machined to form a rough thread to provide the requisite mechanical key for the sprayed-on metal. Part of this sprayed-on layer became detached after the fatigue failure occurred. The quality of the welding was poor. Slag inclusions were present adjacent to the sides of the keyway, which had been re-cut shorter than the original one after the welding repair. Failure at the unusual location was caused by the presence of the weld deposit.
1