Skip Nav Destination
Close Modal
Search Results for
Roller bearings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 122
Search Results for Roller bearings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001191
EISBN: 978-1-62708-225-9
... Abstract Inner rings of spherical roller bearings out of full hardening ball bearing steel 100 CrMn 6 (Fe-1C-1.5Cr-1.1Mn, Material No. 1.3520) failed in service. Due to the cracks, parts from the middle flange broke or the rings failed in radial direction completely. All the cracks and fracture...
Abstract
Inner rings of spherical roller bearings out of full hardening ball bearing steel 100 CrMn 6 (Fe-1C-1.5Cr-1.1Mn, Material No. 1.3520) failed in service. Due to the cracks, parts from the middle flange broke or the rings failed in radial direction completely. All the cracks and fracture originated from the middle flange. In all of the three rings one flank showed heavy wearing and scouring. The cracks started from the edge of this flank with the cylindrical mantle surface of the middle flange. The cracking resembled fatigue cracking. However, in a fine-grained hardened steel such as this, fracture faces due to stress-cracking and overload fracture look the same. Metallographic examination showed the failure of the rings was a result of repeated heating and rapid cooling of the surface due to the grinding of the bearings on one flank of the middle flange. The stress-cracks (grindcracks) spread in steps which finally led to the breaking off of parts from the middle flange and complete failure of the rings.
Image
Published: 01 January 2002
Fig. 31 Viscosities of several lubricants for ball and roller bearings, as related to operating speed and temperature. Source: Ref 14
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001796
EISBN: 978-1-62708-241-9
... Abstract A tri-lobe cylindrical roller bearing was submitted for investigation to determine the cause of uniformly spaced axial fluting damages on its rollers and outer raceway surfaces. The rollers and raceways were made from premium-melted M50 and M50NiL, aircraft quality steels often used...
Abstract
A tri-lobe cylindrical roller bearing was submitted for investigation to determine the cause of uniformly spaced axial fluting damages on its rollers and outer raceway surfaces. The rollers and raceways were made from premium-melted M50 and M50NiL, aircraft quality steels often used in bearings to minimize the effects of orbital slippage and rolling-contact fatigue. The damaged areas were examined under a scanning electron microscope, which revealed a high density of microcraters, characteristic of local melting and material removal associated with bearing currents. Investigators also examined the effect of electrical discharge on crater dimensions and density and the role that thermoelectric voltage potentials may have played.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046371
EISBN: 978-1-62708-234-1
... Abstract When a roller-bearing assembly was removed from an aircraft for inspection after a short time in service, several areas of apparent galling were noticed around the inside surface of the inner cone of the bearing. These areas were roughly circular spots of built-up metal. The bearing...
Abstract
When a roller-bearing assembly was removed from an aircraft for inspection after a short time in service, several areas of apparent galling were noticed around the inside surface of the inner cone of the bearing. These areas were roughly circular spots of built-up metal. The bearing had not seized, and there was no evidence of heat discoloration in the galled areas. The inner cone, made of modified 4720 steel and carburized for wear resistance, rode on an AISI type 630 (17-4 PH) stainless steel spacer. Consequently, it was desirable to determine whether the galled spots contained any stainless steel from the spacer. Other items for investigation were the nature of the bond between the galled spot and the inner cone and any evidence of overtempering or rehardening resulting from localized overheating. Analysis (visual inspection, electron probe x-ray microanalysis, microscopic examination, and hardness testing) supported the conclusions that galling had been caused by a combination of local overload and abnormal vibration of mating parts of the roller-bearing assembly. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001831
EISBN: 978-1-62708-241-9
... Abstract An air blower in an electric power plant failed unexpectedly when a roller bearing in the drive motor fractured along its outer ring. Both rings, as well as the 18 rolling elements, were made from GCr15 bearing steel. The bearing also included a machined brass (MA/C3) cage...
Abstract
An air blower in an electric power plant failed unexpectedly when a roller bearing in the drive motor fractured along its outer ring. Both rings, as well as the 18 rolling elements, were made from GCr15 bearing steel. The bearing also included a machined brass (MA/C3) cage and was packed with molybdenum disulfide (MoS 2 ) lithium grease. Metallurgical structures and chemical compositions of the bearing’s matrix materials were inspected using a microscope and photoelectric direct reading spectrometer. SEM/EDS was used to examine the local morphology and composition of fracture and contact surfaces. Chemical and thermal properties of the bearing grease were also examined. The investigation revealed that the failure was caused by wear due to dry friction and impact, both of which worsened as a result of high-temperature degradation of the bearing grease. Fatigue cracks initiated in the corners of the outer ring and grew large enough for a fracture to occur.
Image
Published: 01 January 2002
Fig. 5 Tapered-roller bearing damaged by electrical pitting. (a) Fluting damage caused by continuous passage of electrical current. (b) A roller from (a) polished on the outside diameter and etched with nital to show the many individual arc marks that led to the destruction of the raceway
More
Image
Published: 01 January 2002
Fig. 7 Low-alloy steel roller bearing from an improperly grounded electric motor that was pitted and etched by electrolytic action of stray electric currents in the presence of moisture.
More
Image
Published: 01 January 2002
Fig. 14 An example of burnup with plastic flow in a tapered-roller bearing. This type of failure may result from loss of lubrication or gross overload. The damage begins as heat generation followed by scoring, and if the lubricant is not replenished or the load reduced, the excessive heat
More
Image
Published: 01 January 2002
Fig. 17 Microspalling (peeling) on a tapered-roller bearing caused by a thin lubricant film compared to the composite surface roughness. (a) Cup showing fatigue on the peaks of surface texture. (b) Cone showing fatigue on the peaks of surface texture. (c) Roller with a general spalled area
More
Image
Published: 01 January 2002
Fig. 20 Spalling damage on the end of a shaft that served as roller-bearing raceway. The spalling was initiated at subsurface inclusions.
More
Image
Published: 01 January 2002
Fig. 24 Drawn-cup needle-roller bearing that failed by gross overload. As the cup increased in width under overload, the oil hole became elongated, and circumferential cracks developed in the outer surface.
More
Image
Published: 01 January 2002
Fig. 25 Bulk damage to a stationary tapered-roller bearing cone resulting from gross impact loading that yielded the cone material and cracked the case-carburized surface. Source: Ref 7
More
Image
Published: 15 January 2021
Image
in A Survey of the Causes of Failure of Rolling Bearings
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Image
in A Survey of the Causes of Failure of Rolling Bearings
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Image
in A Survey of the Causes of Failure of Rolling Bearings
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Image
in Failure of a Low-Alloy Steel Bearing in an Electric Motor Because of Stray Electric Currents
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Fig. 1 Low-alloy steel roller bearing from an improperly grounded electric motor that was pitted and etched by electrolytic action of stray electric currents in the presence of moisture.
More
Image
in Failure Analysis of Railroad Components
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 2 Tapered roller bearing nomenclature. Note: The blue arrow indicates the inner seal wear ring position; the journal is colored blue for clarity. Source: Ref 1
More
Image
in Failure Analysis of Railroad Components
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Image
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 34 Low-alloy steel roller bearing from an improperly grounded electric motor that was pitted and etched by electrolytic action of stray electric currents in the presence of moisture
More
1