Skip Nav Destination
Close Modal
Search Results for
Rods
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 287 Search Results for
Rods
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001273
EISBN: 978-1-62708-215-0
... Abstract One-quarter inch diameter 304 stainless steel cooling tower hanger rods failed by chloride-induced stress-corrosion cracking (SCC). The rods were located in an area of the cooling tower where the air contains drop lets of water below the mist eliminators and above the flow of water...
Abstract
One-quarter inch diameter 304 stainless steel cooling tower hanger rods failed by chloride-induced stress-corrosion cracking (SCC). The rods were located in an area of the cooling tower where the air contains drop lets of water below the mist eliminators and above the flow of water The most extensive cracking was observed in the rod nuts and in the portions of the rod which were covered by the nuts. Cracking was transgranular with extensive branching, and some corrosion occurred along the crack paths. The clamping force from the nuts used on both sides of the supported member and residual stresses from thread rolling likely contributed to the stresses for the cracking mechanism, along with the stresses induced by the supported load. The external surfaces of the hanger rods were reportedly exposed to a chloride-containing atmosphere, likely due to the biocide. Type 304 stainless steel is not a suitable material for this application, and materials that resist SCC, such as Inconel, should be considered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001582
EISBN: 978-1-62708-233-4
... Abstract This article discusses the failure of cylinder clamping rods in single cylinder diesel engines. The AISI 4140 hardened and tempered steel clamping rods were failing after 200 to 250 h of operation. The fatigue failures initiated at the root of the last thread on the clamping rod...
Abstract
This article discusses the failure of cylinder clamping rods in single cylinder diesel engines. The AISI 4140 hardened and tempered steel clamping rods were failing after 200 to 250 h of operation. The fatigue failures initiated at the root of the last thread on the clamping rod that was engaged in a blind hole in the cylinder block. The failures were caused by loose tolerances on the threads that resulted in a non-uniform distribution of load. The load was concentrated on the last threads to engage, thus causing fatigue crack nucleation at the thread root and propagation until the rod broke by overload. Changing the tolerance on the threads virtually eliminated the fatigue problem.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001408
EISBN: 978-1-62708-220-4
... Abstract Initially, two vertical double-acting two-stage compressors delivering chlorine gas at a pressure of 100 psi appeared to be running satisfactorily. About six months later the LP piston-rod of the No. 2 compressor failed due to burning, the compressor being worked double-acting...
Abstract
Initially, two vertical double-acting two-stage compressors delivering chlorine gas at a pressure of 100 psi appeared to be running satisfactorily. About six months later the LP piston-rod of the No. 2 compressor failed due to burning, the compressor being worked double-acting at the time. About five months later, the HP piston rod of the No. 1 compressor failed in a similar manner. Specimens for microscopic examination were cut from the rod in the region of the failure and from the extreme end that had been situated above the piston and hence not subjected to an appreciable rise in temperature. The material was a steel in the normalized condition with a 0.35% C content. It appears probable that deficient lubrication of the gland resulted in overheating of the rod due to friction. The presence of a sprayed-metal coating was probably an additional factor in promoting failure, as it would present to the gas a surface area considerably greater than that of a homogeneous material.
Image
in Chloride-Induced Stress-Corrosion Cracking of Cooling Tower Hanger Rods
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 1 An example of the fracture surface observed on the hanger rods.
More
Image
in Chloride-Induced Stress-Corrosion Cracking of Cooling Tower Hanger Rods
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 3 Examples of the cracking observed in the hanger rods.
More
Image
in Failure Analysis of Cylinder Clamping Rods in Diesel Engines
> ASM Failure Analysis Case Histories: Design Flaws
Published: 01 June 2019
Fig. 2 Photograph of the failed clamping rods showing overload features
More
Image
in Failure Analysis of Cylinder Clamping Rods in Diesel Engines
> ASM Failure Analysis Case Histories: Design Flaws
Published: 01 June 2019
Fig. 3 Fractured clamping rods (note the fracture location is on the first or second thread)
More
Image
in Failure Analysis of Cylinder Clamping Rods in Diesel Engines
> ASM Failure Analysis Case Histories: Design Flaws
Published: 01 June 2019
Fig. 4 Stereomicrograph of cylinder clamping rods showing multiple fracture origin, 2.5×: a) failed after 85 h of service, b) failed after 214 h of service
More
Image
in Failure Analysis of Cylinder Clamping Rods in Diesel Engines
> ASM Failure Analysis Case Histories: Design Flaws
Published: 01 June 2019
Fig. 5 Stereomicrograph of cylinder clamping rods showing fatigue beach marks, 2.5×: a) failed after 85 h of service, b) failed after 214 h of service
More
Image
in Failure Analysis of Cylinder Clamping Rods in Diesel Engines
> ASM Failure Analysis Case Histories: Design Flaws
Published: 01 June 2019
Fig. 6 SEM photograph of cylinder clamping rods showing ratchet marks: a) 30×, b) 30×, c) 150×
More
Image
in Failure Analysis of Cylinder Clamping Rods in Diesel Engines
> ASM Failure Analysis Case Histories: Design Flaws
Published: 01 June 2019
Fig. 7 SEM photograph of cylinder clamping rods showing striations: a) 30×, b) 30×, c) 150×
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001742
EISBN: 978-1-62708-217-4
... Abstract In a helicopter engine connecting rod, high-cycle, low-stress fatigue fractures in bolts and arms progressed about 75% across the section before the final rupture. Factors involved were insufficient specified preload, inadequate tightening during assembly, and engine overspeed...
Abstract
In a helicopter engine connecting rod, high-cycle, low-stress fatigue fractures in bolts and arms progressed about 75% across the section before the final rupture. Factors involved were insufficient specified preload, inadequate tightening during assembly, and engine overspeed. The assigned main causes were design deficiency, improper maintenance during overhaul, and abnormal service operation. The problem can be solved by proper overhauling that ensures bolted assemblies are tightened evenly and accurately, in accordance with recommended torque values. Also, the manufacturer made various modifications, such as a thicker rod, fatigue resistant bolts, and more accurate preload measurements. The configuration of these rods were changed to a tongue-and-groove design to increase service life.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001154
EISBN: 978-1-62708-223-5
... Abstract The cause of fracture of two piston rods of hammers of a drop forge was determined. The first rod of 180 mm diam consisted of an unalloyed steel with 0.37% C and 0.67% Mn and had a strength of 56 kp/sq mm at 26% elongation. Fatigue fractures propagated from several points which could...
Abstract
The cause of fracture of two piston rods of hammers of a drop forge was determined. The first rod of 180 mm diam consisted of an unalloyed steel with 0.37% C and 0.67% Mn and had a strength of 56 kp/sq mm at 26% elongation. Fatigue fractures propagated from several points which could be recognized as flaky cracks already in the fracture, and which later were united. No material defects could be detected in the cross section parallel to the fracture plane except for these very short cracks. These comparatively insignificant defects were sufficient to cause the fracture during high impact fatigue stresses in the drop forge. The second piston rod of 120 mm diam consisted of a steel with 0.25% C and 1.00% Mn. It allegedly had 57 kp/sq mm tensile strength and 26% elongation. The basic structure of the 120 mm piston rod was ferritic-pearlitic and hardness of 155 Brinell was accordingly low, corresponding to approximately 53 kp/sq mm tensile strength. The incipient fractures had no connection with the material defects in this shaft and therefore the fracture could not have been caused by them. Probably the low strength of the piston rod was insufficient for the high stresses.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0047151
EISBN: 978-1-62708-227-3
... Abstract A motorboat engine connecting rod forged from carbon steel fractured in two places and cracked at the small end during service. The analysis (visual inspection, 50x micrographs of sections etched with 2% nital, magnetic-particle inspection, and metallographic examination) supported...
Abstract
A motorboat engine connecting rod forged from carbon steel fractured in two places and cracked at the small end during service. The analysis (visual inspection, 50x micrographs of sections etched with 2% nital, magnetic-particle inspection, and metallographic examination) supported the conclusion that the connecting rods were rendered susceptible to fatigue-crack initiation and propagation by the notch effect of coarse folds formed during the forging operation. One fracture was caused by fatigue resulting from operating stresses, and the other was a secondary tensile fracture. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001195
EISBN: 978-1-62708-227-3
... Abstract A connecting rod from a motor boat was broken in two places at the small end. At position I there was a fatigue fracture brought about by operational stress, whereas the fibrous fracture surface II was a secondary tensile fracture. Furthermore the transition on the other side...
Abstract
A connecting rod from a motor boat was broken in two places at the small end. At position I there was a fatigue fracture brought about by operational stress, whereas the fibrous fracture surface II was a secondary tensile fracture. Furthermore the transition on the other side of the rod was cracked symmetrically to the fatigue fracture (position III). Magnetic inspection showed indications of cracking at the transition between the rod and small end in six other connecting rods from the same batch. Metallographic investigation showed the connecting rods were rendered susceptible to fatigue by the notch effect of coarse scale-filled folds formed during forging.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001208
EISBN: 978-1-62708-229-7
... Abstract A spindle made of hardenable 13% chromium steel X40 Cr13 (Material No. 1.4034) that was fastened to a superheated steam push rod made of high temperature structural steel 13Cr-Mo44 (Material No. 1.7335) by means of a convex fillet weld, fractured at the first operation of the rod...
Abstract
A spindle made of hardenable 13% chromium steel X40 Cr13 (Material No. 1.4034) that was fastened to a superheated steam push rod made of high temperature structural steel 13Cr-Mo44 (Material No. 1.7335) by means of a convex fillet weld, fractured at the first operation of the rod directly next to the weld bead. Investigation showed that the fracture of the superheated steam push rod spindle was caused by hardening and hardening crack formation in the weld seams and adjoining areas. It would have been preferable to avoid welding near the cross sectional transitions altogether in consideration of the crack sensitivity of high hardenability steels. If for some reason this was not possible, then all precautions should have been taken that are applicable to the particular steel, such as preheating, slow cooling and stress relief tempering after welding. The selection of an austenitic additive material should have been considered because it could have equalized stresses due to its high elongation. Most probably, however, a material of lower hardenability should have been selected for the spindle if high operating properties were of paramount importance.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001413
EISBN: 978-1-62708-223-5
... Abstract The fractured end of a piston rod of a hydraulic press failed in line with the leading face of the piston retaining nut. Although the nut apparently had been seated uniformly, the face was polished, indicating that relative movement between it and the piston had taken place. Failure...
Abstract
The fractured end of a piston rod of a hydraulic press failed in line with the leading face of the piston retaining nut. Although the nut apparently had been seated uniformly, the face was polished, indicating that relative movement between it and the piston had taken place. Failure resulted from the culmination of two principal fatigue cracks which developed on approximately parallel planes from the roots of adjacent threads. A longitudinal section through the screw thread on the piston rod showed it had been carburized but not hardened, and that subsequent surface de-carburization to a depth of approximately 0.001 in. had occurred. It was concluded that insufficient tightening, as evidenced by the polish markings, was the main reason for failure, the portion of the rod therefore being subjected to a greater variation of cyclic stress during operation. The presence of the de-carburized layer lowered its resistance to the initiation of a fatigue crack to that of iron, considerably less than the resistance of the mild steel from which the rod was made and well below that shown by the carburized layer.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0046182
EISBN: 978-1-62708-218-1
... surfaces before machining and before putting the part into service. Connecting rods Forgings Nonmetallic inclusions 15B41 UNS H15411 Fatigue fracture Metalworking-related failures A connecting cap ( Fig. 1a ) from a truck engine fractured after 65,200 km (40,500 miles) of service. The cap...
Abstract
A connecting cap from a truck engine fractured after 65,200 km (40,500 mi) of normal service. The cap was made from a 15B41 steel forging and was hardened to 29 to 35 HRC. Visual examination of the fracture surface disclosed an open forging defect across one of the outer corners of the cap. The defect extended approximately 9.5 mm (3/8 in.) along the side of the cap. The fracture surface exhibited beach marks typical of fatigue. The surface of the defect was stained, indicating that oxidation occurred either in heat treatment or in heating during forging. Deep etching of the fracture surface revealed grain flow normal for this type of forging, but no visible defects. 400x metallographic examination of a section through the fracture surface showed that the microstructure was an acceptable tempered martensite. However, oxide inclusions were present at the fracture surface. This evidence supported the conclusion that fatigue fracture initiated at a corner of the cap from a forging defect that extended to the surface. Fatigue cracking was propagated by cyclic loading inherent in the part. Recommendations included more careful fluorescent magnetic-particle inspection of the forged surfaces before machining and before putting the part into service.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001361
EISBN: 978-1-62708-215-0
... Abstract A 17-4 PH steering actuator rod end body broke during normal take-off. Results of failure analysis revealed that the wall thickness of the race was much below the design limits, thus causing the race to rest on the body's swaged edges rather than on the load carrying centerline...
Abstract
A 17-4 PH steering actuator rod end body broke during normal take-off. Results of failure analysis revealed that the wall thickness of the race was much below the design limits, thus causing the race to rest on the body's swaged edges rather than on the load carrying centerline of the body. This assembly condition generated abnormal high loads on the swaged edges, ultimately resulting in fatigue failure. To prevent a recurrence of similar failure in the future, the dimensions of the race in the spherical bearing were changed, no further failure occurred.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001592
EISBN: 978-1-62708-228-0
... Abstract Sucker-rod pumps are operating in very aggressive environments in oil well production. The combined effect of a corrosive environment and significant mechanical loads contribute to frequent cases of failure of the rod string during operation. Standards and recommendations have been...
Abstract
Sucker-rod pumps are operating in very aggressive environments in oil well production. The combined effect of a corrosive environment and significant mechanical loads contribute to frequent cases of failure of the rod string during operation. Standards and recommendations have been developed to control and avoid those failures. This study presents various failure cases of sucker rods in different applications. The heat treatment of the steel material and the resulting microstructure are an important factor in the behavior of the sucker rod. A spheroidized microstructure presents a weaker resistance to corrosion affecting the rod life. Non-metallic inclusions are a pitting preferential site leading to fatigue crack initiation. Heterogeneous microstructure as banded martensite and ferrite/pearlite decreases the ductility of the material affecting the fatigue propagation resistance.
1