Skip Nav Destination
Close Modal
Search Results for
Rocker levers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-6 of 6 Search Results for
Rocker levers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089651
EISBN: 978-1-62708-235-8
... Abstract Several diesel-engine rocker levers (malleable iron similar to ASTM A 602, grade M7002) failed at low hours in overspeed, over-fuel, highly loaded developmental engine tests. Identical rocker levers had performed acceptably in normal engine tests. The rocker levers were failing through...
Abstract
Several diesel-engine rocker levers (malleable iron similar to ASTM A 602, grade M7002) failed at low hours in overspeed, over-fuel, highly loaded developmental engine tests. Identical rocker levers had performed acceptably in normal engine tests. The rocker levers were failing through the radius of an adjusting screw arm. The typical fracture face exhibited two distinct modes of crack propagation: the upper portion indicated overload at final fracture, whereas the majority of the fracture suggested a fatigue fracture. Investigation (visual inspection, 1.5x/30x/60x magnification, and nital etched 300x magnification) supported the conclusion that the rocker levers failed in fatigue, with casting defects, or spiking, acting as stress raisers to initiate failures in highly loaded engine tests. Recommendations included shot peening of the levers as an interim measure to reduce the possibility of failure and redesign to increase the cross-sectional area of the levers.
Image
Published: 01 January 2002
Fig. 45 Failed malleable iron rocker lever. (a) Illustration showing failure location (arrow). (b) Typical appearance of fracture face with dark overload fracture at top, light-gray fatigue fracture, and black casting defect (arrow). 1.5×
More
Image
Published: 01 January 2002
Fig. 46 Section through a spiking defect in rocker lever similar to that shown in Fig. 45 . (a) 30×. (b) 60×
More
Image
in Fatigue Failure of Malleable Iron Diesel-Engine Rocker Levers Originating at Spiking Defects
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 1 Failed malleable iron rocker lever. (a) Illustration showing failure location (arrow). (b) Typical appearance of fracture face with dark overload fracture at top, light-gray fatigue fracture, and black casting defect (arrow). 1.5x
More
Image
in Fatigue Failure of Malleable Iron Diesel-Engine Rocker Levers Originating at Spiking Defects
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 2 Section through a spiking defect in rocker lever similar to that shown in Fig. 45. (a) 30x. (b) 60x
More
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... was submitted for failure analysis to determine the cause of cracking. Investigation The cylinder head was magnetic-particle inspected by both the head and coil methods. No indications were present on the cylinder head, except those shown in Fig. 1 and 2 . The head was cracked on the rocker-arm pan...
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.