1-20 of 108 Search Results for

Retaining rings

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001356
EISBN: 978-1-62708-215-0
... Abstract A shrunk-fit 18 Mn-5Cr steel retaining ring failed without warning during normal unit operation of a 380 MW electrical generator. The cause of the ring failure was determined to be intergranular stress-corrosion cracking (IGSCC) because of the high strength of the ring material...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0046057
EISBN: 978-1-62708-225-9
... Abstract After less than 30 days in service, several cadmium-plated retaining rings, made of 4140 steel tubing and heat treated to 36 to 40 HRC, broke during operation that included holding components of a segmented fitting in place under a constant load. Photographic and 100x nital-etched...
Image
Published: 01 December 1993
Fig. 1 Schematic of a retaining ring assembly More
Image
Published: 01 June 2019
Fig. 1 Retaining ring of cadmium-plated 4140 steel that failed by brittle fracture at a hard spot caused by an arc strike during plating. (a) View of retaining ring, and section showing location of arc strike. Dimensions given in inches. (b) Photograph of the retaining ring showing pit More
Image
Published: 01 June 2019
Fig. 2 Chromium plated retaining ring from lower stem bearing of the bicycle, showing extensive cracking More
Image
Published: 01 June 2019
Fig. 1 Cross Section at End of a Rotor Shaft, Showing Function of Retaining Ring (Here Called “End Bell”) to Hold Return Loops or End Turns of the Rotor Windings. Reproduced from Metal Progress, July 1956 More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001905
EISBN: 978-1-62708-217-4
... Abstract A bomb retaining ring fabricated from type 302 stainless steel unwrapped during a practice flight, causing the bomb fins to deploy. The retaining ring was able to unwrap itself because it was thinner and softer than required. Hardness testing, metallography, and tensile testing...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001489
EISBN: 978-1-62708-217-4
... Abstract The cause of the fatigue failure in the retaining ring of the compressor region of an aero-engine turbine was found to be the presence of a high concentration of nonmetallic inclusions. The results of chemical analysis were used to estimate the phases present. The most frequently...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001786
EISBN: 978-1-62708-241-9
... in a retaining ring groove that were accelerated to sudden failure when the tool post and chuck collided. spline shaft overload failure fatigue cracking carbon steel microcracking metallographic analysis fracture toughness 1035 (nonresulfurized carbon steel) UNS G10350 Introduction...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001725
EISBN: 978-1-62708-229-7
... brittle failure which wrecked the machine, fortunately without human casualty. Forgings Retaining rings Turbogenertors Fe-0.74C-10Mn-5Ni-3.5Cr Brittle fracture Fatigue fracture Introduction In 1955 Sir Claude Gibb of C. A. Parsons & Co., the British engineering firm, presented...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c9001694
EISBN: 978-1-62708-222-8
... overall was in good condition, but detailed investigation revealed that the lower stem bearing had been loose for some time and its outer chromium plated retaining ring contained many cracks ( Fig. 2 ). Metallographic examination of the ring confirmed the brittle nature of the cracks, located along prior...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0089254
EISBN: 978-1-62708-225-9
... Abstract A failed tapered-ring sprocket locking device consisted of an assembly of four tapered rings that are retained by a series of cap screws. The middle wedge-shaped rings were pulled closer as the screws were tightened forcing the split inner ring to clamp tightly onto the shaft. One...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0091893
EISBN: 978-1-62708-218-1
... Abstract An automotive front-wheel outer angular-contact ball bearing generated considerable noise shortly after delivery of the vehicle. The inner and outer rings were made of seamless cold-drawn 52100 steel tubing, the balls were forged from 52100 steel, and the retainer was stamped from 1008...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047998
EISBN: 978-1-62708-225-9
... in the inner-ring raceway which had been softened by the elevated temperatures reached during the failure. Broken retainers and worn and bent out of shape seals were found. Penetration of gritty particles, water and other corrosive agents and leakage of lubricant out of the bearing permitted by the worn seals...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001724
EISBN: 978-1-62708-234-1
... metal in the bores, and a variable pattern of residual stress. Bursting strength Electric generators Forgings Retaining rings Fe-0.65C-8Ni-8Mn-4Cr Intergranular fracture Brittle fracture The year 1954 seems to have been a peculiarly unlucky one for large electrical generators in North...
Image
Published: 30 August 2021
Fig. 16 (a) AISI O1 tool steel ring forging that cracked during quenching. The forging was overaustenitized (unstable retained austenite was present) and was decarburized to a depth of approximately 0.5 mm (0.020 in.). Temper color was present on the crack walls. (b) Interior microstructure More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047793
EISBN: 978-1-62708-217-4
... at several axial locations on the drive shaft showed a reasonably uniform hardness of approximately 570 HV. The impeller and the retaining ring each had a hardness of approximately 780 HV, and the parts surrounding the impeller (including the vanes) exhibited a hardness of approximately 630 HV...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047879
EISBN: 978-1-62708-234-1
... to reduce leakage. Removal of the stainless steel sleeve revealed that tightening of the retaining nut had forced the end of the sleeve against the machined stainless steel shoulder on the shaft and had permanently flattened the O-ring seal. Fig. 1 Stub-shaft assembly, for agitator in a polyvinyl...
Image
Published: 01 January 2002
Fig. 16(a) AISI O1 tool steel ring forging that cracked during quenching. The forging was overaustenitized (unstable retained austenite was present) and was decarburized to a depth of about 0.5 mm (0.020 in.). Temper color was present on the crack walls. See also Fig. 16(b) . More
Image
Published: 01 January 2002
Fig. 16(b) Interior microstructure of the cracked ring forging shown in Fig. 16(a) . Unstable retained austenite (white) and coarse plate martensite (dark) can be seen. The amount of residual carbide was negligible compared to what should have been present. Etched with 3% nital. 700× More