Skip Nav Destination
Close Modal
By
Cássio Barbosa, Jôneo Lopes do Nascimento, José Luiz Fernandes, Ibrahim de Cerqueira Abud
Search Results for
Refineries
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 63 Search Results for
Refineries
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001322
EISBN: 978-1-62708-215-0
... Abstract A failed SAE-192 carbon steel tube from a 6.2-MPa (900-psig), 200-Mg/h (180-ton/h) capacity refinery boiler was analyzed to determine its failure mode. Optical and SEM examination results were combined with knowledge of the boiler operating conditions to conclude that the failure...
Abstract
A failed SAE-192 carbon steel tube from a 6.2-MPa (900-psig), 200-Mg/h (180-ton/h) capacity refinery boiler was analyzed to determine its failure mode. Optical and SEM examination results were combined with knowledge of the boiler operating conditions to conclude that the failure was hydrogen-induced. The hydrogen was probably generated by the steam-iron reaction. The source of steam on the flue gas side could be traced to a cracked fillet weld in the boiler The failure mode was unusual in that the attack was found to originate from the flue gas side of the tube rather than the steam side.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001819
EISBN: 978-1-62708-241-9
... Abstract The shafts on two centrifugal pumps failed during use in a petroleum refinery. Light optical microscopy and scanning electron microscopy were used to analyze the damaged materials to determine the cause of failure. The results showed that one shaft, made of duplex stainless steel...
Abstract
The shafts on two centrifugal pumps failed during use in a petroleum refinery. Light optical microscopy and scanning electron microscopy were used to analyze the damaged materials to determine the cause of failure. The results showed that one shaft, made of duplex stainless steel, failed by fatigue fracture, and the other, made of 316 austenitic stainless steel, experienced a similar fracture, which was promoted by the presence of nonmetallic inclusion particles.
Image
in Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 8 Hydrogen-damaged refinery platformer line (carbon steel, 0.5% Mo). (a) Undamaged microstructure. (b) Decarburization region caused by hydrogen depleting the iron carbides. (c) Microfissuring at inclusions. (d) Hydrogen blister caused by methane gas formation. (a) and (b), nital etch. (c
More
Image
Published: 01 January 2002
Fig. 10 Failed admiralty brass heat-exchanger tubes from a refinery reformer unit. The tubes failed by corrosion fatigue. (a) Circumferential cracks on the tension (outer) surface of the U-bends. Approximately 1 1 4 ×. (b) Blunt transgranular cracking from the water side of tube 1. 40×
More
Image
in Corrosion-Fatigue Failure of U-Bend Heat-Exchanger Tubes
> ASM Failure Analysis Case Histories: Oil and Gas Production Equipment
Published: 01 June 2019
Fig. 1 Failed admiralty brass heat-exchanger tubes from a refinery reformer unit. The tubes failed by corrosion fatigue. (a) Circumferential cracks on the tension (outer) surface of the U-bends. Approximately 1 1 4 ×. (b) Blunt transgranular cracking from the water side of tube 1. 40×
More
Image
in Failures of Pressure Vessels and Process Piping
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 104 Schematic of refinery naphtha hydrotreater unit heat exchangers. There are two banks of three heat exchangers: A/B/C bank and D/E/F bank. The E heat exchanger catastrophically ruptured on April 2, 2010.
More
Image
in Failure Analysis of Heat Exchangers
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 10 Failed admiralty brass heat-exchanger tubes from a refinery reformer unit. The tubes failed by corrosion fatigue. (a) Circumferential cracks on the tension (outer) surface of the U-bends. Original magnification: ~1.25×. (b) Blunt transgranular cracking from the water side of tube 1
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0091594
EISBN: 978-1-62708-228-0
... Abstract Two leaks were discovered at a sulfur recovery unit in a refinery. The leaks were at pipe-to-elbow welds in a 152 mm (6 in.) (NPS 6) diam line, operating in lean amine service at 50 deg C (120 deg F) and 2.9 MPa (425 psig). Thickness measurements indicated negligible loss of metal...
Abstract
Two leaks were discovered at a sulfur recovery unit in a refinery. The leaks were at pipe-to-elbow welds in a 152 mm (6 in.) (NPS 6) diam line, operating in lean amine service at 50 deg C (120 deg F) and 2.9 MPa (425 psig). Thickness measurements indicated negligible loss of metal, and the leaks were clamped. A year later, 15 additional leaks were discovered, again at pipe-to-elbow welds in lean amine lines. Further nondestructive testing located other cracks, giving a total of 35. These lines had been in service for approximately eight years. Investigation (visual inspection, hardness testing, and micrographic cross-sections) supported the conclusion that the failure was caused by lean amine SCC. It was considered unlikely that these pipe welds had received such a postweld heat treatment, although it is industry practice to postweld stress relieve piping and pressure vessels in lean amine service if the temperature is expected to be above 95 deg C (200 deg F). Recommendations included inspecting all welds using shear wave ultrasonic testing and postweld heat treating all welds in lean amine service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048728
EISBN: 978-1-62708-228-0
... Abstract After being in service for ten years, two admiralty brass heat-exchanger tubes from a cooler in a refinery catalytic reforming unit cracked circumferentially in the area of U-bends. A blunt transgranular cracking with minimal branching propagating from the inside surface of the tube...
Abstract
After being in service for ten years, two admiralty brass heat-exchanger tubes from a cooler in a refinery catalytic reforming unit cracked circumferentially in the area of U-bends. A blunt transgranular cracking with minimal branching propagating from the inside surface of the tube was revealed by metallography which was typical of cracking by corrosion fatigue mechanism. Corrosion deposits on both the inside- and outside-diam surfaces were found in the tubes. The presence of copper, zinc, iron, and small amounts of chloride, sulfur, silicon, tin, and manganese was revealed by energy-dispersive analysis of the deposits. It was interpreted by the hardness values (higher than typical for annealed copper tubing) that the tubes may not have been annealed after the U-bends were formed and thus the role of residual stresses in the crack was revealed. It was concluded that the tubes failed by corrosion fatigue initiated by pitting at the inside-diam surface. The tubes were recommended to be annealed after bending to reduce residual stresses from the bending operation to an acceptable level.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048719
EISBN: 978-1-62708-228-0
... Abstract A tubular heat exchanger in a refinery reformer unit leaked after one month of service. The exchanger contained 167 type 304 stainless steel U-bent integral-finned tubes. Cracks in the tube wall were revealed during examination. Hardness of the tube was found to be 30 HRC at the inside...
Abstract
A tubular heat exchanger in a refinery reformer unit leaked after one month of service. The exchanger contained 167 type 304 stainless steel U-bent integral-finned tubes. Cracks in the tube wall were revealed during examination. Hardness of the tube was found to be 30 HRC at the inside surface and up to 40 HRC at the base of the fin midway between the roots which indicated that the fins were cold formed and not subsequently annealed thus susceptible to SCC because of a high residual stress level. It was revealed by metallographic examination that the fracture was predominantly by transgranular branched cracking and had originated from the inside surface. It was concluded that the tubes failed in SCC caused by chlorides in the presence of high residual stresses. The finned tubes were ordered in the annealed condition as a corrective measure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048840
EISBN: 978-1-62708-220-4
... of small cracks at the root of the weld. The cleavage mode of fracture was confirmed by SEM. The presence of extensive secondary cracking and twinning (Neumann bands) where the fracture followed the line of the shroud-support ring was revealed by metallography. It was revealed by refinery maintenance...
Abstract
A spherical carbon steel fixed-catalyst bed reactor, fabricated from French steel A42C-3S, approximately equivalent to ASTM A201 grade B, failed after 20 years of service while in a standby condition. The unit was found to contain primarily hydrogen at the time of failure. The vessel had a type 304 stainless steel shroud around the catalyst bed as protection against the overheating that was possible if the gas bypassed the bed through the refractory material. The failure was observed to have begun at the toe of the shroud-support ring weld. The ring was found to have a number of small cracks at the root of the weld. The cleavage mode of fracture was confirmed by SEM. The presence of extensive secondary cracking and twinning (Neumann bands) where the fracture followed the line of the shroud-support ring was revealed by metallography. It was revealed by refinery maintenance records that the ring had been removed for hydrotest and welded without any postweld heat treatment. The final cause of failure was concluded to be cracking that developed during the installation of the new shroud ring. Stress-relief heat treatments were recommended to be performed to reduce residual-stress levels after welding.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001346
EISBN: 978-1-62708-215-0
... Abstract Alloy UNS N08800 (Alloy 800) tubes of the steam superheating coils of two hydrocracker charge heaters in a refinery failed prematurely in service. Failure analysis of the tubes indicated that the failures could be attributed to thermal fatigue as a result of temperature fluctuations...
Abstract
Alloy UNS N08800 (Alloy 800) tubes of the steam superheating coils of two hydrocracker charge heaters in a refinery failed prematurely in service. Failure analysis of the tubes indicated that the failures could be attributed to thermal fatigue as a result of temperature fluctuations as well as restriction to movement. Fatigue cracks initiated intergranularly from both the flue gas and steam sides. Enhanced general and grain boundary oxidation coupled with age hardening of the alloy led to the formation of incipient intergranular cracks that acted as sites for the initiation of the fatigue cracks.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006823
EISBN: 978-1-62708-329-4
... Abstract This article illustrates the use of the American Petroleum Institute (API) 579-1/ASME FFS-1 fitness-for-service (FFS) code (2020) to assess the serviceability and remaining life of a corroded flare knockout drum from an oil refinery, two fractionator columns affected by corrosion under...
Abstract
This article illustrates the use of the American Petroleum Institute (API) 579-1/ASME FFS-1 fitness-for-service (FFS) code (2020) to assess the serviceability and remaining life of a corroded flare knockout drum from an oil refinery, two fractionator columns affected by corrosion under insulation in an organic sulfur environment, and an equalization tank with localized corrosion in the shell courses in a chemicals facility. In the first two cases, remaining life is assessed by determining the minimum thickness required to operate the corroded equipment. The first is based on a Level 2 FFS assessment, while the second involves a Level 3 assessment. The last case involves several FFS assessments to evaluate localized corrosion in which remaining life was assessed by determining the minimum required thickness using the concept of remaining strength factor for groove-like damage and evaluating crack-like flaws using the failure assessment diagram. Need for caution in predicting remaining life due to corrosion is also covered.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... Abstract This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed...
Abstract
This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed by the objectives of a failure analysis. Then, the article discusses the processes involved in failure analysis, including codes and standards. Next, fabrication flaws that can develop into failures of in-service pressure vessels and piping are covered. This is followed by sections discussing in-service mechanical and metallurgical failures, environment-assisted cracking failures, and other damage mechanisms that induce cracking failures. Finally, the article provides information on inspection practices.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001321
EISBN: 978-1-62708-215-0
... Abstract Tube failures occurred in quick succession in two boiler units from a bank of six boilers in a refinery. The failures were confined to the SAE 192 carbon steel horizontal support tubes of the superheater pack. In both cases, the failure was by perforation adjacent to the welded fin...
Abstract
Tube failures occurred in quick succession in two boiler units from a bank of six boilers in a refinery. The failures were confined to the SAE 192 carbon steel horizontal support tubes of the superheater pack. In both cases, the failure was by perforation adjacent to the welded fin on the crown of the top tubes and located in an area near the upward bend of the tube. The inside of all the tubes were covered with a loosely adherent, black, alkaline, powdery deposit comprised mainly of magnetite. The corroded areas, however, had relatively less deposit. The morphology of the corrosion damage was typical of alkaline corrosion and confirmed that the boiler tubes failed as a result of steam blanketing that concentrated phosphate salts. The severe alkaline conditions developed most probably because of the decomposition of trisodium phosphate, which was used as a water treatment chemical for the boiler feed water.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001814
EISBN: 978-1-62708-241-9
... Abstract A pressure vessel failed causing an external fire on a nine-story coke gasifier in a refinery power plant. An investigation revealed that the failure began as cracking in the gasifier internals, which led to bulging and stress rupture of the vessel shell, and the escape of hot syngas...
Abstract
A pressure vessel failed causing an external fire on a nine-story coke gasifier in a refinery power plant. An investigation revealed that the failure began as cracking in the gasifier internals, which led to bulging and stress rupture of the vessel shell, and the escape of hot syngas, setting off the fire. The failure mechanisms include stress relaxation cracking of a large diameter Incoloy 825 tube, stress rupture of a 4.65 in. thick chromium steel shell wall, and the oxidation of chromium steel exposed to hot syngas. The gasifier process and operating conditions that contributed to the high-temperature degradation were also analyzed and are discussed.
Image
Published: 01 January 2002
Fig. 9 Dead-end piping reveals extensive black deposits through an open flange in refinery piping.
More
Image
Published: 15 January 2021
Fig. 10 Reduced flow in a “dead leg” enabled extensive black deposits to build up, as observed through an open flange in refinery piping.
More
Image
Published: 01 January 2002
Fig. 7 Hydrogen-induced blistering in a 9.5 mm (3/8 in.) thick carbon steel plate (ASTM A 285, grade C) that had been in service one year in a refinery vessel. 1.5×
More
Image
Published: 15 January 2021
Fig. 7 Hydrogen-induced blistering in a 9.5 mm (⅜ in.) thick carbon steel plate (ASTM A285, grade C) that had been in service one year in a refinery vessel. Original magnification: 1.5×
More
1