Skip Nav Destination
Close Modal
By
Z.X. Liu, H.C. Gu
By
Carmine D'Antonio
By
Xiao-feng Qin, Da-le Sun, Li-yang Xie
By
Hans Iwand, Joel Hassebrock
By
Ravi Rungta, Richard C. Rice, Richard D. Buchheit, David Broek
By
Samuel J. Brown
By
Alan A. Johnson, David N. Johnson
By
B.M. Wilson, W.N. Weins
By
Zhi-Qiang Yu, Zhen-Guo Yang
By
George F. Vander Voort
By
George F. Vander Voort
By
Neville Sachs, Neville W. Sachs
Search Results for
Railroad wheels
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 32
Search Results for Railroad wheels
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Failure Modes and Materials Performance of Railway Wheels
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001531
EISBN: 978-1-62708-231-0
... to the performance of cartwheel. Dynamic fracture toughness Fatigue property Performance evaluation Railroad wheels Static mechanical property Fe-0.55C-0.73Mn Fe-0.60C-0.85Mn Fe-0.5C-0.7Mn Rolling-contact wear Spalling wear Fatigue fracture 1. Introduction The railway system in China plays...
Abstract
In this study, the failure modes of cartwheel and mechanical properties of materials have been analyzed. The results show that rim cracking is always initiated from stringer-type alumina cluster and driven by a combination effect of mechanical and thermal load. The strength, toughness, and ductility are mainly determined by the carbon content of wheel steels. The fatigue crack growth resistance is insensitive to composition and microstructure, while the fatigue crack initiation life increases with the decrease of austenite grain size and pearlite colony size. The dynamic fracture toughness, KID, is obviously lower than static fracture toughness, KIC, and has the same trend as KIC. The ratio of KID/sigma YD is the most reasonable parameter to evaluate the fracture resistance of wheel steels with different composition and yield strength. Decreasing carbon content is beneficial to the performance of cartwheel.
Book Chapter
Fracture of a Train Wheel Due to Thermally Induced Fatigue and Residual Stress
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001305
EISBN: 978-1-62708-215-0
... Abstract An ASTM A 504 carbon steel railway car wheel that was used on a train in a metropolitan railway system failed during service, causing derailment. The wheel was completely fractured from rim to hub. Macrofractography of the fracture surface showed road grime, indicating that the crack...
Abstract
An ASTM A 504 carbon steel railway car wheel that was used on a train in a metropolitan railway system failed during service, causing derailment. The wheel was completely fractured from rim to hub. Macrofractography of the fracture surface showed road grime, indicating that the crack had existed for a considerable time prior to derailment and initiated in the flange. Failure propagated from the flange across the rim and down the plate to the bore of the hub. Two zones that exhibited definite signs of heating were observed. The fracture initiation site was typical of fatigue fracture. No defects were found that could have contributed to failure. The wheel conformed to the chemical, microstructural, and hardness requirements for class A wheels. Failure was attributed to repeated severe heating and cooling of the rim and flange due to brake locking or misapplication of the hand brake. It was recommended that the brake system on the car be examined and replaced if necessary.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001138
EISBN: 978-1-62708-231-0
... effects, failure of the thread structure of the clevis occurred. The failure occurred where the cylinder rod screws into the clevis. The rod was manufactured from 1045 steel. Cylinder rods Fretting fatigue Galling Railroad wheels 1045 UNS G10450 Fatigue fracture Fretting wear A. Design...
Abstract
A hi-rail device is a vehicle designed to travel both on roads and on rails. In this case, a truck was modified to accept the wheels for rail locomotion. The rear wheel/axle set was attached to the truck frame. Both the front and rear wheel/axle sets were raised by means of a hydraulic cylinder driven off the PTO of the truck. The wheel/axle set was rigidly fixed into an up or down position by the use of locking pins. It was assumed by the manufacturer that there would be no load on the cylinder once the wheel/axle set was in its locked position. However, as the cylinder pivoted about its mounting trunnion and extended during its motion, it interfered with a frame member. This caused both a bending load and a rotational movement. These effects caused a combination of fretting, galling, and fatigue to the internal thread structure of the clevis. As a result of these deleterious effects, failure of the thread structure of the clevis occurred. The failure occurred where the cylinder rod screws into the clevis. The rod was manufactured from 1045 steel.
Book Chapter
Analysis of Critical Stress for Subsurface Rolling Contact Fatigue Damage Assessment Under Roll/Slide Contact
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001807
EISBN: 978-1-62708-241-9
... A. , Davoli P. , Filippini M. et al. , An integrated approach to rolling contact sub-surface fatigue assessment of railway wheels . Wear 258 , 973 – 980 ( 2005 ) 10.1016/j.wear.2004.03.044 9. Ekberg A. , Kabo E. , Andersson H. Predicting rolling contact fatigue...
Abstract
Rolling contact fatigue is responsible for a large number of industrial equipment failures. It is also one of the main failure modes of components subjected to rolling contact loading such as bearings, cams, and gears. To better understand such failures, an investigation was conducted to assess the role of friction in subsurface fatigue cracking in rolling-sliding contact applications. Based on the results of stress calculations and x-ray diffraction testing of steel samples, friction contributes to subsurface damage primary through its effect on the distribution of orthogonal shear stress. Although friction influences other stress components, the effect is relatively insignificant by comparison. It is thus more appropriate to select orthogonal shear stress as the critical stress when assessing subsurface rolling contact fatigue in rolling-sliding systems.
Book Chapter
Failure Analysis of Railroad Components
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006837
EISBN: 978-1-62708-329-4
... and manufacturing defects has become more important. This article presents case histories that are intended as an overview of the unique types of failures encountered in the freight railroad industry. The discussion covers failures of axle journals, bearings, wheels, couplers, rails and rail welds, and track...
Abstract
Because of the tough engineering environment of the railroad industry, fatigue is a primary mode of failure. The increased competitiveness in the industry has led to increased loads, reducing the safety factor with respect to fatigue life. Therefore, the existence of corrosion pitting and manufacturing defects has become more important. This article presents case histories that are intended as an overview of the unique types of failures encountered in the freight railroad industry. The discussion covers failures of axle journals, bearings, wheels, couplers, rails and rail welds, and track equipment.
Book Chapter
An Investigation of Shell and Detail Cracking in Railroad Rails
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001659
EISBN: 978-1-62708-231-0
... dependent upon wheel load and MGT. Confirmation of this should be obtained from the rails tested at the Facility for Accelerated Service Testing (FAST) where actual growth measurements can be made. Conclusions This most recent study of detail fracture growth patterns in railroad rails has led...
Abstract
A failure analysis case study on railroad rails is presented. The work, performed under the sponsorship of the Department of Transportation, addresses the problem of shell and detail fracture formation in standard rails. Fractographic and metallographic results coupled with hardness and residual stress measurements are presented. These results suggest that the shell fractures form on the plane of maximum residual tensile stresses. The formation of the shells is aided by the presence of defects in the material in these planes of maximum residual stress. The detail fracture forms as a perturbation from the shell crack under cyclic loading and is constrained to develop as an embedded flaw in the early stages of growth because the crack is impeded at the gage side and surface of the rail head by compressive longitudinal stresses.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006792
EISBN: 978-1-62708-295-2
... Properties, Hysteresis Loop Shape, and Kinematic Hardening of Two High-Strength Bearing Steels , Metall. Trans. A , Vol 21 ( No. 2 ), 1990 , p 653 – 665 10.1007/BF02671936 27. Kabo E. and Ekberg A. , Fatigue Initiation in Railway Wheels—A Numerical Study of the Influence of Defects...
Abstract
Rolling-contact fatigue (RCF) is a common failure mode in components subjected to rolling or rolling-sliding contact. This article provides a basic understanding of RCF and a broad overview of materials and manufacturing techniques commonly used in industry to improve component life. A brief discussion on coatings to improve surface-initiated fatigue and wear is included, due to the similarity to RCF and the increasing criticality of this failure mode. The article presents a working knowledge of Hertzian contact theory, describes the life prediction of rolling-element bearings, and provides information on physics and testing of rolling-contact fatigue. Processes commonly used to produce bearings for demanding applications are also covered.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001822
EISBN: 978-1-62708-180-1
..., a review was published of railroad-car axle failures due to the absorption of molten copper ( Ref 2 ). Most axle-journal failures occurred near the wheel hub, an area of high stress and temperature. A broken axle was shown in which the fracture was not destroyed after breakage had occurred. From...
Abstract
This article provides a background of friction-bearing failures due to overheating. The failures of locomotive axles caused by overheated traction-motor support bearings are discussed. The article also describes liquid-metal embrittlement (LME) in steel. It examines the results of various axle studies, with illustrations and concludes with information on the simulation of the LME mechanism.
Book Chapter
Brittle Fracture Explosive Failure of a Pressurized Railroad Tank Car
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001347
EISBN: 978-1-62708-215-0
... to ten large fragments, with the remaining fragments decreasing in size. The large fragments consisted of the following: 2 railroad truck (wheel) assemblies—east and west 2 ends or heads with portions of their adjacent cylindrical shell 4 to 6 large pieces of the 4 central 2.8-m (109.25...
Abstract
A 127 cu m (4,480 cu ft) pressurized railroad tank car burst catastrophically. The railroad tank was approximately 18 m (59 ft) long (from 2:1 elliptical heads), 3 m (10 ft) in OD, and 16 mm (0.63 in.) thick. The chemical and material properties of the tank were to comply with AAR M-128 Grade B. As a result of the explosive failure of the tank car, fragments were ejected from the central region of the car between the support trucks from ground zero to a maximum of approximately 195 m (640 ft). The mode of failure was a brittle fracture originating at a preexisting lamination and crack in the tank wall adjacent to the tank nozzle. The mechanism of failure was overpressurization of the railroad tank car caused by a chemical reaction of the butadiene contents. The interrelationship of the mode, mechanism, and consequences of failure is reviewed to reconstruct the sequence of events that led up to the breach of the railroad tank car. Means to prevent similar reoccurrences are discussed.
Book Chapter
Interpretation of a “Rock Candy” Fracture Exhibited by a Steel Railroad Casting
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001665
EISBN: 978-1-62708-231-0
... Shepherdsville, Kentucky, causing substantial damage to a printing works adjacent to the tracks. In the ensuing litigation, the Louisville and Nashville Railroad Company was forced to pay compensation for the damage caused by the derailment. The railroad carried out an investigation of the mishap and found...
Abstract
Following a freight train derailment, part of a fractured side frame was retained for study because a portion of its fracture surface exhibited a rock candy appearance and black scale. It was suspected of having failed, thereby precipitating the derailment. Metallography, scanning electron microscopy, EDXA, and x-ray mapping were used to study the steel in the vicinity of this part of the fracture surface. It was found to be contaminated with copper. Debye-Scherrer x-ray diffraction patterns obtained from the scale showed that it consisted of magnetite and hematite. It was concluded that some copper was accidentally left in the mold when the casting was poured. Liquid copper, carrying with it oxygen in solution, penetrated the austenite grain boundaries as the steel cooled. The oxygen reacted with the steel producing a network of scale outlining the austenite grain structure. When the casting fractured as a result of the derailment, the fracture followed the scale in the contaminated region thus creating the “rock candy” fracture.
Book Chapter
Metallographic Characterization of Liquid Metal Embrittlement in a Failed Locomotive Axle
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001719
EISBN: 978-1-62708-231-0
... into locomotive axle failures during the last century. A few relevant cases will be reviewed here: The first failure of this kind was reported and investigated in 1914 1 . The failed part was a Krupp Railroad Axle that failed in service. The study concluded that bronze metal was apparent on the fracture...
Abstract
Metallography is an important component of failure analysis. In the case of a liquid metal embrittlement (LME) failure it is usually conclusive if a third phase constituent can be formed inside of the cracks after failure. In the case where it is necessary to characterize the third phase material, one can use various x-ray spectrographic techniques in conjunction with a scanning electron microscope (SEM). This study describes those metallographic and SEM analysis techniques for determining the mode of failure for a locomotive traction motor by LME.
Book
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Book Chapter
Failure Analysis of Fatigue Fracture on the Outer Ring of a Cylindrical Roller Bearing in an Air Blower Motor
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001831
EISBN: 978-1-62708-241-9
... al. [ 3 ] analyzed a failure case of one railway freight wagon wheel that was brought about by the fatigue fracture on the inner rings of the bearings. Li et al. [ 4 ] even reported that a failed aeroengine was the result of fracture of the cage rivets of one cylindrical roller bearing. Moreover...
Abstract
An air blower in an electric power plant failed unexpectedly when a roller bearing in the drive motor fractured along its outer ring. Both rings, as well as the 18 rolling elements, were made from GCr15 bearing steel. The bearing also included a machined brass (MA/C3) cage and was packed with molybdenum disulfide (MoS 2 ) lithium grease. Metallurgical structures and chemical compositions of the bearing’s matrix materials were inspected using a microscope and photoelectric direct reading spectrometer. SEM/EDS was used to examine the local morphology and composition of fracture and contact surfaces. Chemical and thermal properties of the bearing grease were also examined. The investigation revealed that the failure was caused by wear due to dry friction and impact, both of which worsened as a result of high-temperature degradation of the bearing grease. Fatigue cracks initiated in the corners of the outer ring and grew large enough for a fracture to occur.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003520
EISBN: 978-1-62708-180-1
... of copper penetration was observed, so the expert claimed that the axle was defective, and the railroad brought suit against the axle manufacturer. Although it was obvious that the specimen preparation was very poor and that this would make detection of copper by EDS more difficult, it was uncertain how...
Abstract
This article outlines the basic steps to be followed and the range of techniques available for failure analysis, namely, background data assembling, visual examination, microfractography, chemical analysis, metallographic examination, electron microscopy, electron microprobe analysis, X-ray techniques, and simulations. It also describes the steps for analyzing the data, preparing the report, preservation of evidence, and follow-up on recommendations.
Book Chapter
Metallographic Techniques in Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
... to the structure. Laboratory abrasive-wheel cutting is recommended to establish the desired plane of polish. The most commonly used sectioning device in the metallographic laboratory is the abrasive cutoff machine. All abrasive-wheel sectioning should be performed wet. An ample flow of coolant...
Abstract
Metallographic examination is one of the most important procedures used by metallurgists in failure analysis. Typically, the light microscope (LM) is used to assess the nature of the material microstructure and its influence on the failure mechanism. Microstructural examination can be performed with the scanning electron microscope (SEM) over the same magnification range as the LM, but examination with the latter is more efficient. This article describes the major operations in the preparation of metallographic specimens, namely sectioning, mounting, grinding, polishing, and etching. The influence of microstructures on the failure of a material is discussed and examples of such work are given to illustrate the value of light microscopy. In addition, information on heat-treatment-related failures, fabrication-/machining-related failures, and service failures is provided, with examples created using light microscopy.
Book Chapter
Metallographic Techniques in Failure Analysis
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003532
EISBN: 978-1-62708-180-1
... to the structure. Laboratory abrasive-wheel cutting is recommended to establish the desired plane of polish. The most commonly used sectioning device in the metallographic laboratory is the abrasive cutoff machine. All abrasive-wheel sectioning should be performed wet. An ample flow of coolant...
Abstract
This article provides a discussion on the metallographic techniques used for failure analysis, and on fracture examination in materials, with illustrations. It discusses various metallographic specimen preparation techniques, namely, sectioning, mounting, grinding, polishing, and electrolytic polishing. The article also describes the microstructure examination of various materials, with emphasis on failure analysis, and concludes with information on the examination of replicas with light microscopy.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006805
EISBN: 978-1-62708-329-4
... ). With a fluctuating load, this situation can cycle progressively, with continued loss of preload and possibly rapid fatigue failure (the effect of preload on steel automotive wheel studs and the fracture that resulted from the preload are described in Example 1 in this article). To eliminate fatigue problems...
Abstract
This article first provides an overview of the types of mechanical fasteners. This is followed by sections providing information on fastener quality and counterfeit fasteners, as well as fastener loads. Then, the article discusses common causes of fastener failures, namely environmental effects, manufacturing discrepancies, improper use, or incorrect installation. Next, it describes fastener failure origins and fretting. Types of corrosion in threaded fasteners and their preventive measures are then covered. The performance of fasteners at elevated temperatures is addressed. Further, the article discusses the types of rivet, blind fastener, and pin fastener failures. Finally, it provides information on the mechanism of fastener failures in composites.
Book Chapter
Failure Analysis of Gears and Reducers
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006820
EISBN: 978-1-62708-329-4
... the shaft, exposing a fresh surface and fresh lubricant. Proof of this approach can be seen by reviewing the storage practices used by a large chemical plant with a motor and reducer warehouse, with over 300 units in it and adjacent to a plant railroad track. The plant was experiencing repeated premature...
Abstract
This article first reviews variations within the most common types of gears, namely spur, helical, worm, and straight and spiral bevel. It then provides information on gear tooth contact and gear metallurgy. This is followed by sections describing the important points of gear lubrication, the measurement of the backlash, and the necessary factors for starting the failure analysis. Next, the article explains various gear failure causes, including wear, scuffing, Hertzian fatigue, cracking, fracture, and bending fatigue, and finally presents examples of gear and reducer failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006794
EISBN: 978-1-62708-295-2
... delamination and removal by wear. Corrosion enhances the wear attack. Wear of railway steel under repeated rolling contact suffers from such wear attack involving wear, fatigue, and corrosion. Perhaps the most encountered type of fatigue wear corrosion is fretting wear in a corrosive environment, termed...
Abstract
Corrosive wear is defined as surface damage caused by wear in a corrosive environment, involving combined attacks from wear and corrosion. This article begins with a discussion on several typical forms of corrosive wear encountered in industry, followed by a discussion on mechanisms for corrosive wear. Next, the article explains testing methods and characterization of corrosive wear. Various factors that influence corrosive wear are then covered. The article concludes with general guidelines for material selection against corrosive wear.
Book Chapter
Fretting Wear Failures
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
... of the device is the leaf spring used at one time in automobiles and railway rolling stock. It consists of an assemblage of steel plates, whose purpose is to dampen down vibration transmitted from the wheels to the carriage. Accumulation of debris could result in the plates not moving easily over one another...
Abstract
This article reviews the general characteristics of fretting wear in mechanical components with an emphasis on steel. It focuses on the effects of physical variables and the environment on fretting wear. The variables include the amplitude of slip, normal load, frequency of vibration, type of contact and vibration, impact fretting, surface finish, and residual stresses. The form, composition, and role of the debris are briefly discussed. The article also describes the measurement, mechanism, and prevention of fretting wear. It concludes with several examples of failures related to fretting wear.
1